检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
打开Launcher界面 图3 在Launcher中打开TensorBoard 首次单击TensorBoard会进入到一个默认的初始化面板,可以从该面板创建TensorBoard实例。 在Log Dir中填写可视化数据所在的目录,该路径为/home/ma-user/work下的相对路径,填写好后单击右侧“Create
“来源”默认为“ModelArts”。 选择“ModelArts区域”。设置可以使用该资产的ModelArts区域,以控制台实际可选值为准。 单击“算法名称”右侧的“选择”,从ModelArts算法管理中选择待发布的算法,单击“确认”。 填写“资产版本”。版本号格式为“x.x.x”。 设置“谁可以看”。 设置资产的公开权限。可选值有:
2406-aarch64-snt9b-20240910112800-2a95df3 cann_8.0.rc3 pytorch_2.1.0 驱动23.0.6 从SWR拉取 不同软件版本对应的基础镜像地址不同,请严格按照软件版本和镜像配套关系获取基础镜像。 步骤一:检查环境 请参考Lite Server资源开通,购买Lite
可以在Huggingface开源社区获取AWQ量化后的模型权重;或者获取FP16/BF16的模型权重之后,通过autoAWQ工具进行量化。 方式一:从开源社区下载发布的AWQ量化模型。 https://huggingface.co/models?sort=trending&search=QWEN+AWQ
可以在Huggingface开源社区获取AWQ量化后的模型权重;或者获取FP16/BF16的模型权重之后,通过autoAWQ工具进行量化。 方式一:从开源社区下载发布的AWQ量化模型。 https://huggingface.co/models?sort=trending&search=QWEN+AWQ
可以在Huggingface开源社区获取AWQ量化后的模型权重;或者获取FP16/BF16的模型权重之后,通过autoAWQ工具进行量化。 方式一:从开源社区下载发布的AWQ量化模型。 https://huggingface.co/models?sort=trending&search=QWEN+AWQ
专属资源池的费用请参考专属资源池计费项。 - - 存储资源 云硬盘EVS 用于存储运行Notebook实例时产生的数据。 磁盘规格默认为5GB,从Notebook实例创建成功起,直至删除成功,每GB按照规定费用收费。 具体费用可参见云硬盘价格详情。 注意: 存储到EVS中的数据需在EV
题定位工具集详细的使用场景和使用步骤,方便用户自行或在支持下排查可能的数值计算精度问题。 当用户将大语言模型或者其他类型深度神经网络的训练从GPU迁移到昇腾AI处理器时,可能出现以下不同现象的模型精度问题。一般包括: Loss曲线与CPU/GPU差异不符合预期。 验证准确度与CPU/GPU差异不符合预期。
可以在Huggingface开源社区获取AWQ量化后的模型权重;或者获取FP16/BF16的模型权重之后,通过autoAWQ工具进行量化。 方式一:从开源社区下载发布的AWQ量化模型。 https://huggingface.co/models?sort=trending&search=QWEN+AWQ
可以在Huggingface开源社区获取AWQ量化后的模型权重;或者获取FP16/BF16的模型权重之后,通过autoAWQ工具进行量化。 方式一:从开源社区下载发布的AWQ量化模型。 https://huggingface.co/models?sort=trending&search=QWEN+AWQ
可以在Huggingface开源社区获取AWQ量化后的模型权重;或者获取FP16/BF16的模型权重之后,通过autoAWQ工具进行量化。 方式一:从开源社区下载发布的AWQ量化模型。 https://huggingface.co/models?sort=trending&search=QWEN+AWQ
径下,文件打包要求请参见安装文件规范。 安装文件规范 请根据依赖包的类型,在代码目录下放置对应文件: 依赖包为开源安装包时 暂时不支持直接从github的源码中安装。 在“代码目录”中创建一个命名为“pip-requirements.txt”的文件,并且在文件中写明依赖包的包名及其版本号,格式为“包名==版本号”。
多机必填,单机忽略;节点序号,当前节点ID,一般从0开始,单机默认是0。 CKPT_LOAD_DIR /home/ma-user/ws/processed_for_ma_input/BaiChuan2-13B/converted_weights 从 huggingface 格式转化为 megatron
0-cann_8.0.rc3-py_3.10-hce_2.0.2406-aarch64-snt9b-20240910150953-6faa0ed 从SWR拉取。 约束限制 推理需要单机单卡。 确保容器可以访问公网。 Step1 检查环境 请参考Lite Server资源开通,购买Lite
multimodal_algorithm/LLaMA-VID/ 执行安装脚本: bash llama_vid_install.sh 步骤六 下载模型参数 从链接https://huggingface.co/YanweiLi/llama-vid-7b-full-224-video-fps-1中,下载模型参数,并根据以下目录结构存放
参数 参数类型 描述 update_time String 本次更新时间,仅触发服务配置升级时会返回,比如修改config参数,可根据此时间从服务更新记录中过滤出此次的更新结果;修改描述或启停服务不会返回此参数。 resource_ids String 更新的资源ID。 状态码:400
提供的MoXing Framework功能中主要包含操作OBS组件,即下文中描述的mox.file接口。 Moxing主要使用场景为提升从OBS读取和下载数据的易用性,适配对象为OBS对象桶,对于OBS并行文件系统部分接口可能存在问题,不建议使用。生产业务代码开发建议直接调用OBS
要交付给下游系统工程师。MLOps和以往的开发交付不同,在这个过程中,算法工程师参与度还是非常高的。企业内部一般都是有一个交付配合的机制。从项目管理角度上需要增加一个AI项目的工作流程机制管理,流程管理不是一个简单的流水线构建管理,它是一个任务管理体系。 这个工具需要具备以下的能力:
rc3-py_3.9-hce_2.0.2409-aarch64-snt9b-20241112192643-c45ac6b 镜像发布到SWR,从SWR拉取 固件驱动:23.0.6 CANN:cann_8.0.rc3 容器镜像OS:hce_2.0 PyTorch:pytorch_2.1
0.2409-aarch64-snt9b-20241113174059-fcd3700 镜像发布到SWR, region:西南-贵阳一, 从SWR拉取 固件驱动:23.0.6 CANN:cann_8.0.rc3 容器镜像OS:hce_2.0 PyTorch:pytorch_2.1