检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
模型NPU卡数、梯度累积值取值表 不同模型推荐的训练参数和计算规格要求如表1所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表1 NPU卡数、加速框架、梯度配置取值表 模型 Template 模型参数量 训练策略类型 序列长度cutoff_len 梯度累积值
保存ckpt时超时报错 在多节点集群训练完成后,只有部分节点会保存权重,而其他节点会一直在等待通信。当等待时间超过36分钟时,会发生超时的错误。 图1 报错提示 解决方法 1. 需要保证磁盘IO带宽正常,可以在36分钟内将文件保存到磁盘。单个节点内,最大只有60G(实际应该在40G
模型NPU卡数、梯度累积值取值表 不同模型推荐的训练参数和计算规格要求如表1所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表1 NPU卡数、加速框架、梯度配置取值表 模型 Template 模型参数量 训练策略类型 序列长度cutoff_len 梯度累积值
保存ckpt时超时报错 在多节点集群训练完成后,只有部分节点会保存权重,而其他节点会一直在等待通信。当等待时间超过36分钟时,会发生超时的错误。 图1 报错提示 解决方法 1. 需要保证磁盘IO带宽正常,可以在36分钟内将文件保存到磁盘。单个节点内,最大只有60G(实际应该在40G
断点续训和故障快恢说明 相同点 断点续训(Checkpointing)和故障快恢都是指训练中断后可从训练中一定间隔(${save-interval})保存的模型(包括模型参数、优化器状态、训练迭代次数等)继续训练恢复,而不需要从头开始。 不同点 断点续训:可指定加载训练过程中生成的
断点续训和故障快恢说明 相同点 断点续训(Checkpointing)和故障快恢都是指训练中断后可从训练中一定间隔(${save-interval})保存的模型(包括模型参数、优化器状态、训练迭代次数等)继续训练恢复,而不需要从头开始。 不同点 断点续训:可指定加载训练过程中生成的
企业证件认证 无法完成法人人脸扫描,改为相关负责人信息,如果提交的授权书未加盖公章,或未提交授权书,可以进行企业客户实名认证吗? 如果企业认证无法完成法人人脸扫描,怎么办? 如何获取实名认证授权书模板? 企业客户进行企业证件认证时,提交审核的证件缺失怎么办? 企业证件到期或者变更对实名认证
进阶使用:使用ECS作为NFS服务器实现多用户资源隔离 应用场景 FunctionGraph的函数除了支持挂载弹性文件系统SFS外,也支持挂载ECS服务器共享出的NFS共享路径。在多用户使用场景下,使用ECS能够有效地进行多用户的资源管理,通过配置特定的权限,满足用户之间需要强隔离的使用需求
非分离部署推理服务 本章节介绍如何使用vLLM 0.5.0框架部署并启动推理服务。 什么是非分离部署 全量推理和增量推理在同一节点上进行。 前提条件 已准备好Server环境,具体参考资源规格要求。推荐使用“西南-贵阳一”Region上的Server和昇腾Snt9b资源。 安装过程需要连接互联网
使用AWQ量化工具转换权重 AWQ(W4A16/W8A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见支持的模型列表和权重文件。 本章节介绍如何在Notebook使用AWQ量化工具实现推理量化。 量化方法:W4A16
非分离部署推理服务 本章节介绍如何使用vLLM 0.6.0框架部署并启动推理服务。 什么是非分离部署 全量推理和增量推理在同一节点上进行。 前提条件 已准备好Server环境,具体参考资源规格要求。推荐使用“西南-贵阳一”Region上的Server和昇腾Snt9b资源。 安装过程需要连接互联网
使用SmoothQuant量化工具转换权重 SmoothQuant(W8A8)量化方案能降低模型显存以及需要部署的卡数。也能同时降低首token时延和增量推理时延。支持SmoothQuant(W8A8)量化的模型列表请参见支持的模型列表和权重文件。 本章节介绍如何在Notebook
非分离部署推理服务 本章节介绍如何使用vLLM 0.6.3框架部署并启动推理服务。 什么是非分离部署 全量推理和增量推理在同一节点上进行。 前提条件 已准备好Server环境,具体参考资源规格要求。推荐使用“西南-贵阳一”Region上的Server和昇腾Snt9b资源。 安装过程需要连接互联网
使用AWQ量化工具转换权重 AWQ(W4A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见表1。 本章节介绍如何在Notebook使用AWQ量化工具实现推理量化,量化方法为per-group。 Step1 模型量化
使用kv-cache-int8量化 kv-cache-int8是实验特性,在部分场景下性能可能会劣于非量化。当前支持per-tensor静态量化,支持kv-cache-int8量化和FP16、BF16、AWQ、smoothquant的组合。 kv-cache-int8量化支持的模型请参见支持的模型列表和权重文件
剪枝 什么是剪枝 剪枝是一种大模型压缩技术的关键技术,旨在保持推理精度的基础上,减少模型的复杂度和计算需求,以便大模型推理加速。 剪枝的一般步骤是:1、对原始模型调用不同算法进行剪枝,并保存剪枝后的模型;2、使用剪枝后的模型进行推理部署。 常用的剪枝技术包括:结构化稀疏剪枝、半结构化稀疏剪枝
常见错误原因和解决方法 显存溢出错误 网卡名称错误 父主题: 主流开源大模型基于Standard+OBS+SFS适配ModelLink PyTorch NPU训练指导(6.3.908)
常见错误原因和解决方法 显存溢出错误 网卡名称错误 保存ckpt时超时报错 Git下载代码时报错 父主题: 主流开源大模型基于Lite Server适配ModelLink PyTorch NPU训练指导(6.3.908)
常见错误原因和解决方法 显存溢出错误 网卡名称错误 保存ckpt时超时报错 Git下载代码时报错 父主题: 主流开源大模型基于Lite Server适配ModelLink PyTorch NPU训练指导(6.3.909)
训练tokenizer文件说明 在训练开始前,需要针对模型的tokenizer文件进行修改,不同模型的tokenizer文件修改内容如下,您可在创建的Notebook中对tokenizer文件进行编辑。 Yi模型 在使用Yi模型的chat版本时,由于transformer 4.38