已找到以下 28 条记录
AI智能搜索
产品选择
推荐系统 RES
没有找到结果,请重新输入
产品选择
推荐系统 RES
在搜索结果页开启AI智能搜索
开启
产品选择
没有找到结果,请重新输入
  • 数据探索 - 推荐系统 RES

    数据探索 数据探索介绍 数据探索是针对当前数据源的数据进行挖掘和分析,主要聚焦在特征的分布范围、统计以及特征齐全等,使用户能够更了解数据,进而指导在特征工程以及相关算法的配置。 数据探索是一个离线分析任务,任务有对应的启动时间,由于增量数据会实时入库,因此可以通过定时执行数据探索任务来覆盖增量数据。

  • 创建智能场景 - 推荐系统 RES

    兴趣进行个性化推荐。 关联推荐主要应用于固定的物品的关联推荐,根据已关联的物品对相关的内容和行为进行挖掘,网状匹配相关联的物品,进行有关联的推荐。 热门推荐主要应用于当前用户浏览最多的物品内容,如实时搜索量前几的新闻或者物品。 前提条件 已经存在创建成功并完成数据探索的数据源。

  • 应用场景 - 推荐系统 RES

    RES+房产应用场景 场景描述 推荐系统助力房产企业APP实现首页推荐、详情推荐和个人中心推荐。 场景优势: 支持基于经纬度的向量召回,根据地理位置召回高匹配的附近房源。 特征标签网状匹配。 通过卡证识别,快速完成快递录单、手机开户等场景信息录入,实名认证。

  • 数据导入 - 推荐系统 RES

    表数据。 执行完成在页面下方会生成数据相关报告。 “数据导入报告”,显示数据“类型”、“总条目数”、“合法条目数”、“非法条目数”、“重复”和“合法率”信息。 类型包括生成的用户、物品、行为数据。您可以通过单击左侧的查看具体报告信息。 “名称”项显示具体参数的名称。 “条目数”显示各种类型数据的具体数量。

  • 查询数据源任务结果 - 推荐系统 RES

    宽表条目数,行为数据去重以后的数目。 user_complete_degree Double 用户齐全,一条行为中的用户是否在产生这条行为的时候拥有画像。 item_complete_degree Double 物品齐全,一条行为中的物品是否在这条行为产生的时候拥有画像。 bhv_count Map<String

  • 提交排序任务API - 推荐系统 RES

    此来计算两个域中特征的相互关系,其中核的种类包括向量内积外积、矩阵乘法、神经网络等。利用核函数建模特征交互,实现了参数共享,减小了模型复杂。PIN算法请参见核函数特征交互神经网络。 config 否 JSON 其他配置,预留字段。 响应消息 响应参数请参见表3。 表3 响应参数说明

  • 部署服务 - 推荐系统 RES

    id和attr_weight。例如,在购物车场景,使用的召回候选集来自于离线计算基于物品的协同过滤生成的候选集,而为了尽可能保证推荐的匹配,要求推荐出来的物品尽可能的与用户性别、体质和年龄等属性吻合,所以考虑基于用户性别、体质和年龄等属性用标签索引得到的满足条件物品列表item1,

  • 排序策略 - 推荐系统 RES

    此来计算两个域中特征的相互关系,其中核的种类包括向量内积外积、矩阵乘法、神经网络等。利用核函数建模特征交互,实现了参数共享,减小了模型复杂。单击查看核函数特征交互神经网络详细信息。 表5 核函数特征交互神经网络参数说明 参数名称 说明 计算节点信息 用户可使用的计算资源种类。“