检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
人脸检测 功能介绍 人脸检测是对输入图片进行人脸检测和分析,输出人脸在图像中的位置、人脸关键属性。若照片中存在多张人脸,则返回所有符合条件的人脸特征信息。 前提条件: 请确保您已开通人脸识别服务,具体操作方法请参见申请服务。
为什么其他大模型适用的提示词在盘古大模型上效果不佳 提示词与训练数据的相似度关系。 提示词的效果通常与训练数据的相似度密切相关。当提示词的内容与模型在训练过程中接触过的样本数据相似时,模型更容易理解提示词并生成相关的输出。这是因为模型通过学习大量的训练数据,逐渐建立起对特定模式、
image2_face CompareFace object 第2幅图像中检测到的人脸,DetectFace结构见DetectFace。 调用失败时无此字段。 similarity Double 人脸相似度,1表示最大,0表示最小,值越大表示越相似。
提示词写作常用方法论 打基础 先制定一个能够明确表达主题的提示词(若模型训练时包含相似任务,可参考模型训练使用的提示词),再由简至繁,逐步增加细节和说明。打好基础是后续提示词优化的前提,基础提示词生成效果差,优化只会事倍功半。 例如,文学创作类可以使用“请创作一个关于{故事主题}
情况调整训练参数,帮助模型更好学习。 Prompt设置:请检查您使用的Prompt,对于同一个目标任务,建议在推理阶段使用和训练数据相同或相似的PROMPT,才能发挥出模型的最佳效果。 模型规格:理论上模型的参数规模越大,模型能学到的知识就越多,能学会的知识就更难,若目标任务本身
识。 例如,在构造泛化问题的任务中,需要基于原问题改写为相同含义的问题,而不是生成相似的问题。当提示词使用“请生成10个跟“手机银行怎么转账”相似的问题”时,模型会认为实体/关键词/场景一致则是相似(在这个例子里实体为手机银行),而不是任务需要的语义级别的相同含义,所以输出内容会发散。
创建图片类数据集评估标准 ModelArts Studio大模型开发平台针对图片数据集预设的一套评估标准,涵盖了图像清晰度、分辨率、标签准确性、图像一致性等多个质量维度,用户可以直接使用该标准或在该标准的基础上创建评估标准。 若您希望使用平台预置的评估标准,可跳过此章节至创建图片类数据集评估任务。
推理参数(解码参数)是一组用于控制模型生成预测结果的参数,其可以用于控制模型生成结果的样式,如长度、随机性、创造性、多样性、准确性和丰富度等等。 当前,平台支持的推理参数包括:温度、核采样以及话题重复度控制,如下提供了这些推理参数的建议值和说明,供您参考: 表1 推理参数的建议和说明 推理参数 范围 建议值 说明
创建视频类数据集评估标准 ModelArts Studio大模型开发平台针对视频数据集预设了一套评估标准,涵盖了视频的清晰度、帧率、完整性、标签准确性等多个质量维度,用户可以直接使用该标准或在该标准的基础上创建评估标准。 若您希望使用平台预置的评估标准,可跳过此章节至创建视频类数据集评估任务。
为后续的模型训练和优化奠定坚实基础。 ModelArts Studio大模型开发平台提供了全面的数据集质量评估工具,能够帮助用户从多个维度检测和优化数据集的质量。平台预设了多种数据类型的基础评估标准,用户可以直接使用这些标准,也可以根据具体的业务需求创建自定义的评估标准。通过这种
果,即回答中反复出现某一句话或某几句话。这种情况可能是由于以下几个原因导致的,建议您依次排查: 推理参数设置:请检查推理参数中的“话题重复度控制”或“温度”或“核采样”等参数的设置,适当增大其中一个参数的值,可以提升模型回答的多样性。 数据质量:请检查训练数据中是否存在文本重复的异常数据,可以通过规则进行清洗。
控制生成文本多样性和质量。调高核采样可以使输出结果更加多样化。 最大口令限制 用于控制聊天回复的长度和质量。 话题重复度控制 用于控制生成文本中的重复程度。调高参数模型会更频繁地切换话题,从而避免生成重复内容。 词汇重复度控制 用于调整模型对频繁出现的词汇的处理方式。调高参数会使模型减少相同词汇的重复使用,促使模型使用更多样化的词汇进行表达。
的文档。 段落结尾不完整句子过滤 删除文本中不完整段落和句子。 广告数据过滤 删除文本中包含广告数据的句子。 全局文本去重 检测并去除数据中重复或高度相似的文本,防止模型过拟合或泛化性降低。 父主题: 数据集加工算子介绍
用于天气基础要素预测,时间分辨率为1小时。 支持预训练、微调、在线推理、能力调测特性,基于Snt9B33,支持1个训练单元训练及1个推理单元部署。 Pangu-AI4S-Weather_3h-20241030 用于天气基础要素预测,时间分辨率为3小时。 支持预训练、微调、在线推理、能力调测特性,基于Snt9B
本支持全量微调、LoRA微调、INT8量化、断点续训、在线推理和能力调测特性。 Pangu-NLP-N1-Chat-128K-20241030 128K 此版本是2024年10月发布的十亿级模型版本,支持128K序列长度在线推理。基于Snt9B3卡支持8卡推理部署,此模型版本仅支
此版本在Studio上首次发布,用于海洋基础要素预测,支持在线推理、能力调测特性,可以Snt9B3部署,可支持1个推理单元部署推理。 Pangu-AI4S-Ocean_Regional_24h-20241030 此版本在Studio上首次发布,用于区域海洋基础要素预测,支持预训练、微调、在线推理、能力调测特性,基于
INT8量化、断点续训、在线推理和能力调测特性。单卡部署4K模型版本支持64并发,单卡部署32K模型版本支持32并发。 Pangu-NLP-N1-Chat-128K-20241030 128K 此版本是2024年10月发布的十亿级模型版本,支持128K在线推理。基于Snt9B3卡
问题二:模型生成的文案中重复讨论一个相同的话题。 解决方案:对于这种情况,可以尝试修改推理参数。例如,降低“话题重复度控制”参数的值。若调整推理参数不生效,则检查数据质量,确认数据中不存在重复数据和高度相似数据。 父主题: 从基模型训练出行业大模型
单标签的标签文件示例,如1.txt文件内容如下所示: Cat 多标签的标签文件示例,如2.txt文件内容如下所示: Cat Dog 物体检测数据集标注文件说明 物体检测数据集支持格式为ModelArts PASCAL VOC 1.0。 要求用户将标注对象和标注文件存储在同一目录,并且一一对应
景复杂或专业,则需要上万条数据。 数据质量要求: 保证数据的分布和目标需要与实际场景匹配。 保证数据的覆盖度:数据需要尽可能覆盖产品所提供的功能;数据需要覆盖难易度、长短度,包含参数丰富等场景;数据在长短、扁平与深层嵌套、对接客户api接口数量上全覆盖。 数据中需要提供JSON的
索的知识型Agent,如搜索问答助手、代码生成助手等,执行主体在大模型;另一种是针对复杂工作流场景的流程型Agent,如金融分析助手、网络检测助手等。 知识型Agent:以大模型为任务执行核心,用户通过配置Prompt、知识库、工具、规划模式等信息,实现工具自主规划与调用,优点是
评测任务的需求。通过提供自动化的质量检测和数据清洗能力,对原始数据进行优化,确保其质量和一致性。同时,数据工程工具链还提供强大的数据存储和管理能力,为大模型训练提供高质量的数据支撑。 支持区域: 西南-贵阳一 使用数据工程准备与处理数据集 检测数据集质量 清洗数据集 发布数据集 模型开发工具链