0/24范围的所有节点,都可以访问 /var/docker/hilens 。* 代表所有,即没有限制。也可以填写具体某个节点的IP。 rw:权限设置,可读可写。 anonuid:为映射的匿名用户id,anongid为映射的匿名用户组,也就是挂载进容器后,在容器中看到的文件属主。
资源池:选择部署模型所需的边缘资源池,创建边缘资源池步骤请详见创建边缘资源池。 CPU:部署需要使用的最小CPU值(物理核)。 内存:部署需要使用的最小内存值。 Ascend:部署使用的NPU数量。 负载均衡:创建负载均衡步骤请详见步骤5:创建负载均衡。 实例数:设置部署模型时所需的实例数。 安全护栏
盘古专业大模型能力与规格 盘古专业大模型是盘古百亿级NL2SQL模型,适用于问数场景下的自然语言问题到SQL语句生成,支持常见的聚合函数(如去重、计数、平均、最大、最小、合计)、分组、排序、比较、条件(逻辑操作、离散条件、范围区间等条件的混合和嵌套)、日期操作,支持多表关联查询。 与非专业大模型相比,
资源池:选择部署模型所需的边缘资源池,创建边缘资源池步骤请详见创建边缘资源池。 CPU:部署需要使用的最小CPU值(物理核)。 内存:部署需要使用的最小内存值。 Ascend:部署使用的NPU数量。 负载均衡:创建负载均衡步骤请详见步骤5:创建负载均衡。 实例数:设置部署模型时所需的实例数。 作业输入方式
ss(损失函数值)的变化趋势。损失函数是一种衡量模型预测结果和真实结果之间的差距的指标,正常情况下越小越好。 您可以从平台的训练日志中获取到每一步的Loss,并绘制成Loss曲线,来观察其变化趋势。一般来说,一个正常的Loss曲线应该是单调递减的,即随着训练的进行,Loss值不断减小,直到收敛到一个较小的值。
据,确保数据的准确性与一致性,从而提高数据质量,为模型训练提供可靠的输入。 扩展数据集的多样性和泛化能力 在数据量不足或样本不平衡的情况下,数据合成可以生成新数据,扩展数据集的规模和多样性。通过增加数据的多样性,能够提升模型在各种场景下的泛化能力,增强其对未知数据的适应性。 增强模型训练的有效性
其中,before文件夹:包含变化前的图片,每幅图片需与变化后的图片同名、同尺寸。 after文件夹:包含变化后的图片,每幅图片需与变化前的图片同名、同尺寸。 label文件夹:包含与变化前和变化后图片同名、同尺寸的PNG文件。每个像素值代表该位置对应的类别信息,类别应是连续的且从0开始。 视频分类