检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
时序预测-time_series_v2算法部署在线服务预测报错 问题现象 在线服务预测报错:ERROR: data is shorter than windows。 原因分析 该报错说明预测使用的数据行数小于window超参值。 在使用订阅算法时序预测-time_series_v2
MMCV的依赖与PyTorch版本不匹配。 处理方法 可参考链接的内容,根据PyTorch和CUDA版本安装对应版本的MMCV。 父主题: 预置算法运行故障
重建、停止或删除训练作业 另存为算法 当您需要修改训练作业的算法时,可以在训练作业详情页面右上角,单击“另存为算法”。 在“创建算法”页面中,会自动填充上一次训练作业的算法参数配置,您可以根据业务需求在原来算法配置基础上进行修改。 订阅算法不支持另存为算法。 重建训练作业 当对创建的
TPE算法优化的超参数必须是分类特征(categorical features)吗 对于优化的超参数类型,TPE算法本身是没有限制的,但出于面对普通用户节省资源的目的,ModelArts在前端限制了TPE的超参数必须是float,如果想离散型和连续型参数混用的话,可以调用rest接口。
使用预置AI算法部署在线服务报错gunicorn:error:unrecorgized arguments 问题现象 使用预置AI算法部署在线服务报错gunicorn:error:unrecorgized arguments... 图1 在线服务报错 原因分析 根据报错日志分析,
在ModelArts上训练模型,输入输出数据如何配置? ModelArts支持用户上传自定义算法创建训练作业。上传自定义算法前,请完成算法开发并上传至OBS桶。创建算法请参考使用预置框架创建算法。创建训练作业请参考创建训练作业指导。 解析输入路径参数、输出路径参数 运行在ModelA
如何使用soft NMS方法降低目标框堆叠度 目前华为云AI市场订阅的算法中,yolo3可以使用该方法降低目标框堆叠度,yolo5 算法中没有看到相关支持的信息,需要在自定义算法进行使用。 父主题: Standard数据管理
【下线公告】华为云ModelArts服务旧版数据集下线公告 【下线公告】华为云ModelArts MindStudio/ML Studio/ModelBox镜像下线公告 【下线公告】华为云ModelArts算法套件下线公告
旧版中使用“算法管理”中已保存的算法创建训练作业的用户,可以在新版训练中使用“我的算法”创建训练作业。 旧版中使用“算法管理”中订阅的算法创建训练作业的用户,可以在新版训练中使用“我的订阅”创建训练作业。 旧版中使用“常用框架”创建训练作业的用户,可以在新版训练中使用“自定义算法”创建训练作业(启动方式选择“预置框架”)。
如何使用soft NMS方法降低目标框堆叠度 目前华为云AI市场订阅的算法YOLOv3-Ascend(物体检测/TensorFlow)中可以使用soft NMS,YOLOv5算法文档中没有看到相关支持的信息,需要自定义算法进行使用。 父主题: 功能咨询
使用AI市场物体检测YOLOv3_Darknet53算法训练后部署在线服务报错 问题现象 使用AI市场物体检测YOLOv3_Darknet53算法进行训练,将数据集切分后进行部署在线服务报错,日志如下:TypeError: Cannot interpret feed_dict key
算法运行时需要依赖鉴权服务,公共资源池是否支持两者打通网络? 不支持,公共资源池不能打通网络。可通过专属资源池打通网络,使用ModelArts服务。 父主题: Standard资源池
上传数据和算法至SFS(首次使用时需要) 前提条件 ECS服务器已挂载SFS,请参考ECS服务器挂载SFS Turbo存储。 在ECS中已经创建ma-user和ma-group用户,请参考在ECS中创建ma-user和ma-group。 已经安装obsutil,请参考下载和安装obsutil。
目录是/ma-user 图2 目录是/work 解决方案 这是创建训练作业选用的算法有差异导致的。 如果选择的算法是使用旧版镜像创建的,那么创建训练作业时输入输出参数的超参目录就是/work。 图3 创建算法 如果选择的算法不是使用旧版镜像创建的,那么创建训练作业时输入输出参数的超参目录就是/ma-user。
ModelArts Standard模型训练提供便捷的作业管理能力,提升用户模型训练的开发效率 提供算法资产的管理能力,支持通过算法资产、自定义算法、AI Gallery订阅算法创建训练作业,使训练作业的创建更灵活、易用 提供实验管理能力,用户通常需要调整数据集、调整超参等进行多
欠拟合的解决方法有哪些? 模型复杂化。 对同一个算法复杂化。例如回归模型添加更多的高次项,增加决策树的深度,增加神经网络的隐藏层数和隐藏单元数等。 弃用原来的算法,使用一个更加复杂的算法或模型。例如用神经网络来替代线性回归,用随机森林来代替决策树。 增加更多的特征,使输入数据具有更强的表达能力。
订阅算法物体检测YOLOv3_ResNet18(Ascend)训练失败报错label_map.pbtxt cannot be found 问题现象 使用订阅算法物体检测YOLOv3_ResNet18(Ascend) 进行训练作业,训练失败报错label_map.pbtxt cannot
ModelArts训练好后的模型如何获取? 使用自动学习产生的模型只能在ModelArts上部署上线,无法下载至本地使用。 使用自定义算法或者订阅算法训练生成的模型,会存储至用户指定的OBS路径中,供用户下载。 父主题: 功能咨询
开发用于预置框架训练的代码 当您使用ModelArts Stanard提供的预置框架创建算法时,您需要提前完成算法的代码开发。本章详细介绍如何改造本地代码以适配ModelArts上的训练。 创建算法时,您需要在创建页面提供代码目录路径、代码目录路径中的启动文件、训练输入路径参数和训练
选择的支持实例无效,请检查请求中信息的合法性。 原因分析 用户选择的训练规格资源和算法不匹配。 例如:算法支持的是GPU规格,创建训练作业时选择了ASCEND规格的资源类型。 处理方法 查看算法代码中设置的训练资源规格。 检查创建训练作业时所选的资源规格是否正确,重新创建训练作业选择正确的资源规格。