检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
吞吐量(tokens/s/p):可通过表1表格中output_dir参数值路径下的trainer_log.jsonl计算性能。取中间过程多steps平均值吞吐计算公式为: delta_tokens = end_total_tokens-start_ total_tokens delta_time
吞吐量(tokens/s/p):可通过表1表格中output_dir参数值路径下的trainer_log.jsonl计算性能。取中间过程多steps平均值吞吐计算公式为: delta_tokens = end_total_tokens-start_ total_tokens delta_time
吞吐量(tokens/s/p):可通过修改重要参数表格中output_dir参数值路径下的trainer_log.jsonl计算性能。取中间过程多steps平均值吞吐计算公式为: delta_tokens = end_total_tokens-start_ total_tokens delta_time
您需要为每个计费周期预先付费,计费公式如表2所示。 表2 计费公式 资源类型 计费公式 资源单价 计算资源 实例规格单价 * 计算节点个数 * 购买时长 请参见ModelArts价格详情中的“规格价格”。 上述示例配置的费用计算如下: 包年/包月专属资源池费用 = 1,750 * 1 * 2 = 3,500
吞吐量(tokens/s/p):可通过表1表格中output_dir参数值路径下的trainer_log.jsonl计算性能。取中间过程多steps平均值吞吐计算公式为: delta_tokens = end_total_tokens-start_ total_tokens delta_time
rank模块,html中会基于表格展示每张卡不同step的计算耗时、通信耗时和空闲耗时。基于该表格,通常关注计算耗时(compute)和空闲耗时(free)这两列,可以初步分析当前瓶颈点是计算还是任务下发,以及是否存在计算快慢卡和下发快慢卡。如下图所示,可以看到8号卡的计算耗时明显大于其他卡,因此8号卡的
Prefill阶段(全量推理) 将用户请求的prompt传入大模型,进行计算,中间结果写入KVCache并推出第1个token,属于计算密集型。 Decode阶段(增量推理) 将请求的前1个token传入大模型,从显存读取前文产生的KVCache再进行计算,属于访存密集型。 分离部署场景下,全量推理和增
中的API计算数值与CPU或GPU芯片中的API计算数值,进行问题定位。 同一模型,进行迭代(模型、框架版本升级或设备硬件升级)时存在的精度下降问题,对比相同模型在迭代前后版本的API计算数值,进行问题定位。 首先通过在PyTorch训练脚本中插入dump接口,跟踪计算图中算子的
故障恢复 ModelArts全球基础设施围绕华为云区域和可用区构建。华为云区域提供多个在物理上独立且隔离的可用区,这些可用区通过延迟低、吞吐量高且冗余性高的网络连接在一起。利用可用区,您可以设计和操作在可用区之间无中断地自动实现故障转移的应用程序和数据库。与传统的单个或多个数据中
NPU_Flash_Attn融合算子约束 query、key、value都需要梯度。默认开启重计算,则前向时qkv没有梯度,如果需要关闭重计算,可以在yaml配置 `disable_gradient_checkpointing: true` 关闭,但显存占用会直线上升。 attn_mask
NPU_Flash_Attn融合算子约束 query、key、value都需要梯度。默认开启重计算,则前向时qkv没有梯度,如果需要关闭重计算,可以在yaml配置 `disable_gradient_checkpointing: true` 关闭,但显存占用会直线上升。 attn
NPU_Flash_Attn融合算子约束 query、key、value都需要梯度。默认开启重计算,则前向时qkv没有梯度,如果需要关闭重计算,可以在yaml配置 `disable_gradient_checkpointing: true` 关闭,但显存占用会直线上升。 attn
NPU_Flash_Attn融合算子约束 query、key、value都需要梯度。默认开启重计算,则前向时qkv没有梯度,如果需要关闭重计算,可以在yaml配置 `disable_gradient_checkpointing: true` 关闭,但显存占用会直线上升。 attn_mask
NPU_Flash_Attn融合算子约束 query、key、value都需要梯度。默认开启重计算,则前向时qkv没有梯度,如果需要关闭重计算,可以在yaml配置 `disable_gradient_checkpointing: true` 关闭,但显存占用会直线上升。 attn_mask
云端服务是集中化的离终端设备较远,对于实时性要求高的计算需求,把计算放在云上会引起网络延时变长、网络拥塞、服务质量下降等问题。而终端设备通常计算能力不足,无法与云端相比。在此情况下,通过在靠近终端设备的地方建立边缘节点,将云端计算能力延伸到靠近终端设备的边缘节点,从而解决上述问题。
ModelArts支持将模型按照业务需求部署为服务。训练类型不同,部署后的计费方式不同。 将模型部署为服务时,根据数据集大小评估模型的计算节点个数,根据实际编码情况选择计算模式。 具体计费方式请参见ModelArts产品价格详情。 父主题: 计费FAQ
业务失败&硬件正常 隔离故障节点后,系统会在新的计算节点上重新创建训练作业。如果资源池规格紧张,重新下发的训练作业会以第一优先级进行排队。如果排队时间超过30分钟,训练作业会自动退出。该现象表明资源池规格任务紧张,训练作业无法正常启动,推荐您购买专属资源池补充计算节点。 如果您使用专属资源池创建训
分流:默认为100,输入值必须是0-100之间。 计算节点规格:请根据界面显示的列表,选择可用的规格,置灰的规格表示当前环境无法使用。如果公共资源池下规格为空数据,表示当前环境无公共资源。建议使用专属资源池,或者联系系统管理员创建公共资源池。 计算节点个数:默认为1,输入值必须是1-5之间的整数。
分流:默认为100,输入值必须是0-100之间。 计算节点规格:请根据界面显示的列表,选择可用的规格,置灰的规格表示当前环境无法使用。如果公共资源池下规格为空数据,表示当前环境无公共资源。建议使用专属资源池,或者联系系统管理员创建公共资源池。 计算节点个数:默认为1,输入值必须是1-5之间的整数。
分流:默认为100,输入值必须是0-100之间。 计算节点规格:请根据界面显示的列表,选择可用的规格,置灰的规格表示当前环境无法使用。如果公共资源池下规格为空数据,表示当前环境无公共资源。建议使用专属资源池,或者联系系统管理员创建公共资源池。 计算节点个数:默认为1,输入值必须是1-5之间的整数。