检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
BLE(大写)和CKtable(大小写混合),HetuEngine只能使用cktable(小写)。 是:要求数据源同一个Schema下只能有一个Table名称,如cktable(小写)或者CKTABLE(大写)或者CKtable(大小写混合),否则HetuEngine无法使用该Schema下的所有表。
Spark是分布式批处理框架,提供分析挖掘与迭代式内存计算能力,支持多种语言(Scala/Java/Python)的应用开发。 适用以下场景: 数据处理(Data Processing):可以用来快速处理数据,兼具容错性和可扩展性。 迭代计算(Iterative Computation):支持迭代计算,有效应对多步的数据处理逻辑。
MRS支持在大数据存储容量大、计算资源需要弹性扩展的场景下,用户将数据存储在OBS服务中,使用MRS集群仅做数据计算处理的存算分离模式。 本文将向您介绍如何在MRS集群中运行Flink作业来处理OBS中存储的数据。 方案架构 Flink是一个批处理和流处理结合的统一计算框架,其核心是一个提
开发思路 作为存储引擎,通常情况下会和计算引擎一起协同工作: 首先在计算引擎上(比如Impala)用SQL语句创建表对象; 然后通过Kudu的驱动往这个表里写数据; 于此同时可以在计算引擎上直接查询这个表里的数据。 在本开发程序示例中,为了不引入额外的计算引擎,将以Kudu为主,全部通过Java
Yarn与其他组件的关系 Yarn和Spark组件的关系 Spark的计算调度方式,可以通过Yarn的模式实现。Spark共享Yarn集群提供丰富的计算资源,将任务分布式的运行起来。Spark on Yarn分两种模式:Yarn Cluster和Yarn Client。 Yarn
Spark是分布式批处理框架,提供分析挖掘与迭代式内存计算能力,支持多种语言的应用开发。 通常适用以下场景: 数据处理(Data Processing):可以用来快速处理数据,兼具容错性和可扩展性。 迭代计算(Iterative Computation):支持迭代计算,有效应对多步的数据处理逻辑。 数据挖掘(Data
Hive常用配置参数 Hive是建立在Hadoop上的数据仓库框架,提供大数据平台批处理计算能力,能够对结构化/半结构化数据进行批量分析汇总完成数据计算。 本章节主要介绍Hive常用参数。 操作步骤 登录FusionInsight Manager,选择“集群 > 服务 > Hive
AZ的健康状态由AZ内的存储资源(HDFS)、计算资源(Yarn)和关键角色的健康度是否超过配置阈值决定。 AZ亚健康有两种: 计算资源(Yarn)不健康,存储资源(HDFS)健康,任务无法提交到本AZ,但是数据可以继续往本AZ内读写。 计算资源(Yarn)健康,存储资源(HDFS)
MemArtsCC基本原理 MemArtsCC是一款面向存算分离架构的分布式计算侧缓存系统,采用极轻量化的架构设计,部署在计算侧的集群中,通过智能预取远端对象存储上的数据提供高速缓存能力,从而来加速计算任务执行。 MemArtsCC在存储层面将远端对象存储(OBS)上的对象进行切
Spark与其他组件的关系 Spark和HDFS的关系 通常,Spark中计算的数据可以来自多个数据源,如Local File、HDFS等。最常用的是HDFS,用户可以一次读取大规模的数据进行并行计算。在计算完成后,也可以将数据存储到HDFS。 分解来看,Spark分成控制端(Dr
Spark2x与其他组件的关系 Spark和HDFS的关系 通常,Spark中计算的数据可以来自多个数据源,如Local File、HDFS等。最常用的是HDFS,用户可以一次读取大规模的数据进行并行计算。在计算完成后,也可以将数据存储到HDFS。 分解来看,Spark分成控制端(Dr
式分析等。 Spark提供了一个快速的计算、写入及交互式查询的框架。相比于Hadoop,Spark拥有明显的性能优势。Spark使用in-memory的计算方式,通过这种方式来避免一个MapReduce工作流中的多个任务对同一个数据集进行计算时的IO瓶颈。Spark利用Scala
Flink基本原理 Flink简介 Flink是一个批处理和流处理结合的统一计算框架,其核心是一个提供了数据分发以及并行化计算的流数据处理引擎。它的最大亮点是流处理,是业界最顶级的开源流处理引擎。 Flink最适合的应用场景是低时延的数据处理(Data Processing)场景
特性简介 MRS集群支持创建Task节点,只作为计算节点,不存放持久化的数据,是实现弹性伸缩的基础。 客户价值 在MRS服务只作为计算资源的场景下,使用Task节点可以节省成本,并可以更加方便快捷地对集群节点进行扩缩容,满足用户对集群计算能力随时增减的需求。 用户场景 当集群数据量变
Ranger权限,可参考添加HetuEngine的Ranger访问权限策略。 创建HetuEngine计算实例。 创建计算实例并确保运行正常,可参考创建HetuEngine计算实例。 步骤二:获取JDBC jar包并配置主机映射 下载HetuEngine客户端获取JDBC jar包。
如何给集群内用户添加租户管理权限? 分析集群和混合集群支持添加租户管理权限,流式集群不支持添加租户管理权限。给新建账号添加租户管理权限方法如下: MRS 3.x之前版本: 登录MRS Manager。 在“系统设置 > 用户管理”中选择新建的用户,单击“操作”列中的“修改”。 在
emArtsCCInputStream,该InputStream从部署在计算侧上的MemArtsCC集群读取数据,从而减少OBS服务端压力,提升数据读取性能的目标。 MemArtsCC会将数据持久化存储到计算侧的存储中(SSD),OBS对接MemArtsCC有如下使用场景: 提升存算分离架构访问数据的性能
INSERT SELECT语句调优 动态分区插入场景内存优化 小文件优化 聚合算法优化 Datasource表优化 合并CBO优化 多级嵌套子查询以及混合Join的SQL调优 父主题: 使用Spark2x(MRS 3.x及之后版本)
Flink应用开发简介 组件介绍 Flink是一个批处理和流处理结合的统一计算框架,其核心是一个提供了数据分发以及并行化计算的流数据处理引擎。它的最大亮点是流处理,是业界最顶级的开源流处理引擎。 Flink最适合的应用场景是低时延的数据处理(Data Processing)场景:
Flink应用开发简介 简介 Flink是一个批处理和流处理结合的统一计算框架,其核心是一个提供了数据分发以及并行化计算的流数据处理引擎。它的最大亮点是流处理,是业界最顶级的开源流处理引擎。 Flink最适合的应用场景是低时延的数据处理(Data Processing)场景:高并