检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
和数据治理的效率,帮助用户更好地对数据进行追根溯源。另外平台还提供了完善的标签体系、支持数据按行业标准进行分类、按行业标准进行安全分级、内置场景分类标签。帮助用户进行数据分类、数据质量控制和数据资产管理,提升数据治理的效率和效果。 通过整合上述功能,数据工程在AI研发中不仅帮助用
HTTP请求方法,表示服务正在请求操作类型,包括: GET:请求服务器返回指定资源。 PUT:请求服务器更新指定资源。 POST:请求服务器新增资源或执行特殊操作。 DELETE:请求服务器删除指定资源,如删除对象等。 HEAD:请求服务器资源头部。 PATCH:请求服务器更新资源的部分内容。当资源不存在的时
在“模型配置”中,选择模型并进行参数配置。 在“意图配置”中,填写场景意图。 其中,意图的内容为针对该场景的描述语句或关键词,同时也将作为大模型进行推理和分类的依据,数量为2 ~ 5个。 在“高级配置”中配置提示词。单击“确定”,完成参数配置。 图6 意图识别节点参数配置 配置“提示器”节点。
盘古科学计算大模型面向气象、医药、水务、机械、航天航空等领域,融合了AI数据建模和AI方程求解方法。该模型从海量数据中提取数理规律,利用神经网络编码微分方程,通过AI模型更快速、更精准地解决科学计算问题。 ModelArts Studio大模型开发平台为用户提供了多种规格的科学计算大模
使用API调用NLP大模型 预置模型或训练后的模型部署成功后,可以使用“文本对话”API实现模型调用。 表1 NLP大模型API清单 API分类 API访问路径(URI) 文本对话 /v1/{project_id}/deployments/{deployment_id}/chat/completions
开始节点:作为工作流的入口,开始节点负责接收用户输入的文本。无论是普通对话文本,还是包含翻译请求的文本,都将从此节点开始。 意图识别节点:该节点对用户输入的文本进行分类和分析,识别出用户的意图。主要包括以下两种意图: 文本翻译意图:系统识别出用户希望进行文本翻译的请求。 其他意图:包括普通对话、问答、或其
盘古大模型推理SDK是对REST API进行的封装,通过该SDK可以处理用户的输入,生成模型的回复,从而实现自然流畅的对话体验。 表1 推理SDK清单 SDK分类 SDK功能 支持语言 使用场景 推理SDK 对话问答(/chat/completions) Java、Python、Go、.NET、NodeJs
其中,“数据配置”展示了各训练数据涉及到的全部参数,请根据具体前端页面展示的参数进行设置。 表1 科学计算大模型中期天气要素预测微调训练参数说明 参数分类 参数名称 参数说明 训练配置 模型来源 选择“盘古大模型”。 模型类型 选择“科学计算大模型”。 场景 选择“中期天气要素预测”。 训练类型
通过语种识别模型得到文档的语言类型,筛选所需语种的文档。 全局文本去重 检测并去除数据中重复或高度相似的文本,防止模型过拟合或泛化性降低。 数据打标 预训练文本分类 针对预训练文本进行内容分类,例如新闻、教育、健康等类别,支持分析语种包括:中文、英文。 通用质量评估 针对文本进行通用质量的评估,例如流畅度、清晰度、丰富度等。
circle 圆形 圆心坐标和半径。 <cx>100<cx> <cy>100<cy> <r>50<r> 图像分类数据集标注文件说明 该说明适用于表1中的图片分类标注文件格式。 图像分类数据集支持格式为ModelArts image classification 1.0。 要求用户将标注
在“创建训练任务”页面,参考表1完成训练参数设置。 其中,“训练参数”展示了各场景涉及到的全部参数,请根据具体前端页面展示的参数进行设置。 表1 CV大模型微调参数说明 参数分类 训练参数 说明 训练配置 模型来源 选择“盘古大模型”。 模型类型 选择“CV大模型”。 训练类型 选择“微调”。 基础模型 选择所需微调的基础模型。
在“创建训练任务”页面,参考表1完成训练参数设置。 其中,“训练参数”展示了各场景涉及到的全部参数,请根据具体前端页面展示的参数进行设置。 表1 预测大模型微调参数说明 参数分类 训练参数 说明 训练配置 模型来源 选择“盘古大模型”。 模型类型 选择“预测大模型”。 训练类型 选择“微调”。 基础模型 选择所需微调的基础模型。
0.0 2024年12月发布的版本,支持分析历史数据中的特征与类别的关系,学习出一种映射规则或函数,然后应用这个规则对未来未知的数据点进行分类。 Pangu-Predict-Table-Reg-2.0.0 2024年12月发布的版本,支持根据已知的输入变量(特征)来预测一个连续型输出变量(目标变量)。
// 标注 34.5, 42.4 分别表示起始时间和结束时间,单位为s。 // label 表示分类,必须是classes列表中的一个元素,表示该视频片段对应的事件或动作类型。 'annotations': [
营成本,并为客户提供更精准、个性化的服务。 模型效果优秀 经过海量数据训练,盘古大模型在各种自然语言处理任务中展现出卓越的性能。无论是文本分类、情感分析、机器翻译,还是问答系统,模型都能以高准确率完成任务,为用户提供高质量的输出结果。 这种卓越的表现源于其先进的算法和深度学习架构
平台支持视频类数据集的清洗操作,分为数据提取、数据过滤、数据打标三类,视频类加工算子能力清单见表1。 表1 视频类清洗算子能力清单 算子分类 算子名称 算子描述 数据提取 镜头拆分 根据视频中的镜头场景变化将长视频拆分为短视频片段,如果某个镜头片段的长度超过设定的时间阈值,该镜头片段将按时长进行进一步拆分。
页面将根据勾选情况适配具体的订购项。 图1 选择开发场景 在“模型资产”页面,参考表1完成模型资产的订购。 表1 模型资产订购说明 模型分类 模型订阅 计费方式 NLP大模型 盘古-NLP-N1-基模型 盘古-NLP-N1-基础功能模型 包年/包月(1~9个月,包年为1年) 盘古-NLP-N2-基模型
型性能越好。 平均交并比 平均交并比是所有类别的交并比的平均值。数值越高,表明模型在所有类别上的性能越好。 像素精度 像素精度表示模型正确分类的像素数量占总像素数量的比例。数值越高,表明模型性能越好。 精准率 精准率是指在模型预测为正类的样本中,真正类样本的比例。数值越高,表明模型在检测正类样本时的准确性越高。
Studio大模型开发平台承载,它提供了包括盘古大模型在内的多种大模型服务,提供覆盖全生命周期的大模型工具链。 产品介绍 立即使用 在线体验 图说ECS 成长地图 由浅入深,带您玩转盘古大模型 01 了解 了解盘古大模型的概念、优势、应用场景以及模型能力与规格,您将更全面地掌握其强大功能,
满足复杂业务需求。 支持区域: 西南-贵阳一 开发盘古大模型提示词工程 开发盘古大模型Agent应用 使用盘古NLP大模型创建Python编码助手应用 低代码构建多语言文本翻译工作流 能力调测 盘古大模型提供了便捷的“能力调测”功能,用户可以体验平台预置的多种模型功能,如文本对话、科学计算功能。