检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
训练分类器 确定模板图片的参照字段和识别区后,多模板分类工作流在模板数量较多,或版式相似度较高的情况下,建议针对不同的模板上传对应的训练集数据,用于训练模板分类模型,使服务能够精准地分类多个模板图片,然后对多个模板图片进行文字识别和结构化提取。 前提条件 已在文字识别套件控制台选
自然语言处理套件(使用文本分类工作流开发应用) ModelArts Pro的自然语言处理套件提供了通用文本分类工作流和多语种文本分类工作流,通过工作流指引支持自主上传文本数据,构建高精度文本分类预测模型,适配不同行业场景的业务数据,快速获得定制服务。 通用文本分类工作流仅支持中文文本分类,多语种文
通用文本分类工作流 工作流介绍 准备数据 选择数据 标注数据 训练模型 评估模型 部署服务 发布数据集 管理数据集版本 父主题: 自然语言处理套件
多模板分类工作流 工作流介绍 上传模板图片 定义预处理 框选参照字段 框选识别区 训练分类器 评估应用 部署服务 编辑应用 自定义字段类型 删除应用 父主题: 文字识别套件
通用图像分类工作流 工作流介绍 新建应用 准备数据 选择数据 训练模型 评估模型 部署服务 父主题: 视觉套件
部署服务 评估模型后,就可以部署服务,开发通用图像分类的专属应用,此应用用于识别输入图像的类型,也可以直接调用对应的API和SDK识别。 前提条件 已在“工业智能体控制台>工业AI开发>工业AI开发工作流”选择“通用图像分类工作流”新建应用,并评估模型,详情请见评估模型。 由于部
部署服务 模型准备完成后,您可以部署服务,开发属于自己的文本分类应用,此应用用于分类自己所上传的文字内容,也可直接调用对应的API。 前提条件 已在自然语言处理套件控制台选择“通用文本分类工作流”新建应用,并评估模型,详情请见评估模型。 由于部署服务涉及ModelArts功能,需消耗资源,要确保账户未欠费。
部署服务 模型准备完成后,您可以部署服务,开发属于自己的语种文本分类应用,此应用用于分类自己所上传的文字内容,也可直接调用对应的API。 前提条件 已在自然语言处理套件控制台选择“多语种文本分类工作流”新建应用,并评估模型,详情请见评估模型。 由于部署服务涉及ModelArts功能,需消耗资源,要确保账户未欠费。
开发属于自己的文字识别应用,此应用用于识别自己所上传的图片属于哪种模板以及识别图片中的文字。 前提条件 已在文字识别套件控制台选择“多模板分类工作流”新建应用,并完成评估模板步骤,详情请见评估应用。 操作步骤 在“应用开发>部署”页面完成模板评估后,单击“下一步”,进入“创建模板
Pro>自然语言处理套件”控制台,选择“我的工作流>通用文本分类工作流”新建应用,详细操作请见新建应用。您可以开发文本分类应用,通过训练文本分类预测模型,实现文本分类功能。 图1 文本分类流程 表1 文本分类流程说明 流程 说明 详细指导 准备数据 在使用通用文本分类工作流开发应用之前,您需要提前准备用于模型训练的数据,上传至OBS中。
上传本地的图片作为测试图片。 “分类模式”:打开“分类模式”开关时,单独对分类器的准确度进行评估。上传图片后,右侧会显示模板自动分类的结果,包括“模板ID”、“模板名”、“置信度”。关闭“分类模式”开关时,默认评估状态为端到端地对待识别图片自动分类并进行结构化识别。 上传在线图片
在使用通用图像分类工作流开发应用时,您需要选择训练数据集,后续训练模型操作是基于您选择的训练数据集。 训练数据集可以选择创建一个新的数据集,也可以选择导入基于通用图像分类工作流创建的其他应用中已创建的数据集。 新建训练数据集 导入已有数据集 前提条件 通用图像分类工作流支持将服务
一些常用的指标,如精准率、召回率等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在“工业智能体控制台>工业AI开发>工业AI开发工作流”选择“通用图像分类工作流”新建应用,并训练模型,详情请见训练模型。 评估模型 在“模型评估”页面,您可以针对当前版本的模型进行模型评估,查看评估参数对比和详细评估,也可以模拟在线测试。
工作流”新建应用,详细操作请见新建应用。您可以开发通用图像分类模型,自主上传数据训练模型,实现图像分类功能。 图1 通用图像分类工作流流程 表1 通用图像分类工作流说明 流程 说明 详细指导 准备数据 在使用通用图像分类工作流开发应用之前,您需要提前准备用于模型训练的数据,上传至OBS中。
基于已设计好的分类标签准备文本数据。每个分类标签需要准备5个及以上数据,为了训练出效果较好的模型,建议每个分类标签准备100个以上的数据。 针对未标注数据,将待标注的内容放在一个文本文件内,通用文本分类工作流仅支持中文文本内容的分类,其他语种的文本分类请使用多语种文本分类工作流。 针
文本数据至少包含2个及以上的标签。每个分类标签需要准备5个及以上数据,为了训练出效果较好的模型,建议每个分类标签准备100个以上的数据。 多语种文本分类工作流仅支持对单语种的文本分类,当前支持文本分类的语种包括英语、法语、德语、西班牙语、葡萄牙语、阿拉伯语等。暂不支持对同一文本中含多语种的文本进行分类训练。
在使用通用图像分类工作流开发应用之前,您需要提前准备用于模型训练的数据,上传至OBS服务中。 设计图像分类标签 首先使用的数据需要考虑好分类的标签类型,即希望识别出图片中的一种结果。例如对天气现象图片进行分类时,标签可以以“snow”(雪)、“rainy”(雨)等作为分类的类别。 数据集要求
训练模型 选择训练数据后,基于已标注的训练数据,选择预训练模型、配置参数,用于训练文本分类模型。 前提条件 已在自然语言处理套件控制台选择“通用文本分类工作流”新建应用,并选择训练数据集,详情请见选择数据。 训练模型 图1 模型训练 在“模型训练”页面,勾选模型训练所使用的“预训
、“定义预处理”、“框选参照字段”、“框选识别区”、“训练分类器”、“评估”步骤的信息,重新部署模板。操作指引如下: 上传模板图片 定义预处理 框选参照字段 框选识别区 训练分类器 评估应用 部署服务 父主题: 多模板分类工作流
训练模型 选择训练数据后,基于已标注的训练数据,选择预训练模型、配置参数,用于训练文本分类模型。 前提条件 已在自然语言处理套件控制台选择“多语种文本分类工作流”新建应用,并选择训练数据集,详情请见选择数据。 训练模型 图1 模型训练 在“模型训练”页面,勾选模型训练所使用的“预