检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
地数据上传至OBS(对象存储服务),然后通过平台提供的“数据导入”功能,将存储在OBS中的数据导入至平台进行使用。 具体操作步骤如下: 上传数据至OBS:将本地数据上传至OBS服务,请详见通过控制台快速使用OBS。 使用数据导入功能:通过平台提供的“数据导入”功能,将数据从OBS导入到平台。
购买周期计费,适用于可预估资源使用周期的场景。 按需计费模式:按需付费是后付费方式,可以随时开通/关闭对应资源,支持秒级计费,系统会根据云服务器的实际使用情况每小时出账单,并从账户余额里扣款。 父主题: 计费FAQ
如何判断任务场景应通过调整提示词还是场景微调解决 在选择是否通过调整提示词或场景微调来解决任务时,需要从以下两个主要方面进行考虑: 业务数据的可获取性 考虑该任务场景的业务数据是否公开可获取。如果该场景的相关数据可以公开获取,说明模型在训练阶段可能已经接触过类似的语料,因此具有一
HTTP请求方法,表示服务正在请求操作类型,包括: GET:请求服务器返回指定资源。 PUT:请求服务器更新指定资源。 POST:请求服务器新增资源或执行特殊操作。 DELETE:请求服务器删除指定资源,如删除对象等。 HEAD:请求服务器资源头部。 PATCH:请求服务器更新资源的部分内容。当资源不存在的时
Failed 未满足前提条件,服务器未满足请求者在请求中设置的其中一个前提条件。 413 Request Entity Too Large 由于请求的实体过大,服务器无法处理,因此拒绝请求。为防止客户端的连续请求,服务器可能会关闭连接。如果只是服务器暂时无法处理,则会包含一个Retry-After的响应信息。
如何利用提示词提高大模型在难度较高推理任务中的准确率 可以通过思维链的方式提高大模型在复杂推理任务中的准确率。 思维链是一种通过分步骤推理来提升大模型在复杂任务中表现的方法。通过引导模型思考问题的过程,可以使其在推理任务中得到更高的准确性,尤其是在涉及多步推理和复杂逻辑关系的任务中。
评估模型效果的方法有很多,通常可以从以下几个方面来评估模型训练效果: Loss曲线:通过Loss曲线的变化趋势来评估训练效果,确认训练过程是否出现了过拟合或欠拟合等异常情况。 模型评估:使用平台的“模型评估”功能,“模型评估”将对您之前上传的测试集进行评估。通过查看测试集样本的PPL、BLEU和ROUGE等指标,进行
模型对异常值过度敏感,导致拟合异常值而非整体数据分布。 训练过程中损失波动较大,甚至出现梯度爆炸。 模型在测试集上表现不佳,泛化能力差。 优化调整策略如下: 通过统计学方法如计算四分位距、Z-score、样本分布等排查异常值。 通过可视化方法,数据可视化或者使用箱线图进行异常值的排查。 结合数据自身特征,进行异常数据的筛选。
"target":"1. 通过诱导用户下载事先写好的木马病毒:\n可以通过诱惑用户去下载某些“小便宜”,然后通过木马程序来控制用户的主机。\n2. 通过网站入侵: \n如果目标主机是一台网络服务器,可以通过找上传漏洞,然后传木马上去。如果没有上传漏洞,可以通过找SQL注入,进入后台,上传木马,提取,控制目标服务器。"}
目录下只有1个数据文件时,文件无命名要求。 目录下有多个数据文件时,需要通过命名的方式指定数据是训练数据集、验证数据集还是测试数据集。训练数据名称需包含train字样,如train01.csv;验证数据名称需包含eval字样;测试数据名称需包含test字样。文件的命名不能同时包含train、eval和test中的两个或三个。
模型训练前,未对数据进行加工。 模型训练前,需要对微调数据进行加工,防止某些特征存在极端异常值或大面积错误数据,导致模型训练不稳定。可能会引发如下问题: 模型对异常值过度敏感,导致拟合异常值而非整体数据分布。 训练过程中损失波动较大,甚至出现梯度爆炸。 模型在测试集上表现不佳,泛化能力差。
多场景测试:对多种不同场景下的prompt进行测试,确保在各种情境下系统能够有效响应: 不同语言对的翻译:如图3,针对不同的语言对(如中文到法语、俄语到西班牙语),评估翻译效果是否稳定。 图3 多场景测试-不同语言对 复杂对话场景:如图4,当用户在对话中频繁切换意图时,测试意图识
调用接口有如下认证方式,您可以选择其中一种进行认证鉴权。 Token认证:通过Token认证调用请求。 AppCode认证:当用户部署的API服务期望开放给其他用户调用时,原有Token认证无法支持,可通过AppCode认证调用请求。 AK/SK认证:通过AK(Access Key ID)/SK(Secret
耕行业,打造多领域行业大模型和能力集。盘古大模型能力通过ModelArts Studio大模型开发平台承载,它提供了包括盘古大模型在内的多种大模型服务,提供覆盖全生命周期的大模型工具链。 产品介绍 立即使用 在线体验 图说ECS 成长地图 由浅入深,带您玩转盘古大模型 01 了解
模型训练前,未对数据进行加工。 模型训练前,需要对数据进行加工,防止某些特征存在极端异常值或大面积错误数据,导致模型训练不稳定。可能会引发如下问题: 模型对异常值过度敏感,导致拟合异常值而非整体数据分布。 训练过程中损失波动较大,甚至出现梯度爆炸。 模型在测试集上表现不佳,泛化能力差。
保证模型能够在实际应用中提供准确的预测结果。 应用与部署:当大模型训练完成并通过验证后,进入应用阶段。主要包括以下几个方面: 模型优化与部署:将训练好的大模型部署到生产环境中,可能通过云服务或本地服务器进行推理服务。此时要考虑到模型的响应时间和并发能力。 模型监控与迭代:部署后的
身份认证与访问控制 用户可以通过调用REST网络的API来访问盘古大模型服务,有以下两种调用方式: Token认证:通过Token认证调用请求。 AK/SK认证:通过AK(Access Key ID)/SK(Secret Access Key)加密调用请求。经过认证的请求总是需要
插件介绍 在Agent开发平台中,插件是大模型能力的重要扩展。通过模块化方式,插件能够为大模型提供更多专业技能和复杂任务处理能力,使其在多样化的实际场景中更加高效地满足用户需求。 通过插件接入,用户可以为应用赋予大模型本身不具备的能力。插件提供丰富的外部服务接口,当任务执行时,模
创建边缘资源池 边缘部署是指将模型部署到用户的边缘设备上,这些设备通常是用户自行采购的服务器,通过ModelArts服务纳管为边缘资源池,然后利用盘古大模型服务将模型部署到这些边缘资源池中。 ModelArts边缘节点是ModelArts平台提供的用于部署边缘服务的终端设备。创建
上角“继续上传”,上传本地文件。 知识库命中测试 平台支持对创建的知识库进行命中测试,以评估知识库的效果和准确性。 命中测试通过将用户的查询与知识库中的内容进行匹配,最终输出与查询相关的信息,并根据匹配的程度进行排序。 知识库命中测试步骤如下: 登录ModelArts Studi