检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
是,则修改安全组的配置,具体操作请参见修改安全组规则。 否,则继续下一步。 确认SFS Turbo是否存在异常。 新建一个和SFS Turbo在同一个网段的ECS,用ECS去挂载SFS Turbo,如果挂载失败,则表示SFS Turbo异常。 是,联系SFS服务的技术支持处理。 否,联系ModelArts的技术支持处理。
#安装opencompass脚本 ├──vllm_api.py #启动vllm api服务器 ├──vllm.py #构造vllm评测配置脚本名字 相关文档 和本文档配套的模型训练文档请
参数类型 是否必选 参数说明 -i / --job-id String 是 DLI Spark作业ID。 -y / --yes Bool 否 强制关闭指定DLI Spark作业。 示例 ma-cli dli-job stop -i ${your_job_id} 父主题: ModelArts
在线服务列表页面单击“名称/ID”,进入在线服务详情页面。 单击CloudShell页签,选择模型版本和计算节点,当连接状态变为时,即登录实例容器成功。 如果遇到异常情况服务器主动断开或超过10分钟未操作自动断开,此时可单击“重新连接”重新登录实例容器。 图5 CloudShell界面 部分用户登录Cloud S
#安装opencompass脚本 ├──vllm_api.py #启动vllm api服务器 ├──vllm.py #构造vllm评测配置脚本名字 相关文档 和本文档配套的模型训练文档请
Agent监控插件 当前账户需要给CES授权委托,请参考创建用户并授权使用云监控服务。 当前还不支持在CES界面直接一键安装监控,需要登录到服务器上执行以下命令安装配置Agent。其它region的安装请参考单台主机下安装Agent。 cd /usr/local && curl -k
方式二:使用Java语言发送预测请求 AK/SK签名认证方式,仅支持Body体12M以内,12M以上的请求,需使用Token认证。 客户端须注意本地时间与时钟服务器的同步,避免请求消息头X-Sdk-Date的值出现较大误差。因为API网关除了校验时间格式外,还会校验该时间值与网关收到请求的时间差,如果
订阅免费算法 在AI Gallery中,您可以查找并订阅免费满足业务需要的算法,直接用于创建训练作业。 AI Gallery中分享的算法支持免费订阅,但在使用过程中如果消耗了硬件资源进行部署,管理控制台将根据实际使用情况收取硬件资源的费用。 前提条件 注册并登录华为云,且创建好OBS桶用于存储数据和模型。
value="1.0"), wf.AlgorithmParameters(name="save_model_secs", value="60"), wf.AlgorithmParameters(name="save_summary_steps"
|── alpaca_gpt4_data.json #微调数据文件 上传代码和权重文件到工作环境 使用root用户以SSH的方式登录服务器。 将AscendCloud代码包AscendCloud-xxx-xxx.zip上传到${workdir}目录下并解压缩,如SFS Tur
print(','.join(map(str, result))) 上传代码和权重文件到工作环境 使用root用户以SSH的方式登录服务器。 将AscendCloud代码包AscendCloud-xxx-xxx.zip上传到${workdir}目录下并解压缩,如SFS Tur
身份认证与访问控制 身份认证 用户访问ModelArts的方式有多种,包括ModelArts控制台、API、SDK,无论访问方式封装成何种形式,其本质都是通过ModelArts提供的REST风格的API接口进行请求。 ModelArts的接口均需要进行认证鉴权以此来判断是否通过身
#安装opencompass脚本 ├──vllm_api.py #启动vllm api服务器 ├──vllm.py #构造vllm评测配置脚本名字 相关文档 和本文档配套的模型训练文档请参考主流开源大模型基于Lite
├──install.sh #安装opencompass脚本 ├──vllm_api.py #启动vllm api服务器 ├──vllm.py #构造vllm评测配置脚本名字 ├──vllm_ppl.py #ppl精度测试脚本
save_summary_steps=save_summary_steps, save_model_secs=save_model_secs, checkpoint_path=flags.checkpoint_url, export_model=mox
#安装opencompass脚本 ├──vllm_api.py #启动vllm api服务器 ├──vllm.py #构造vllm评测配置脚本名字 相关文档 和本文档配套的模型训练文档请参考主流开源大模型基于Lite
from __future__ import print_function import os import gzip import codecs import argparse from typing import IO, Union import numpy as np import
├──install.sh #安装opencompass脚本 ├──vllm_api.py #启动vllm api服务器 ├──vllm.py #构造vllm评测配置脚本名字 ├──vllm_ppl.py #ppl精度测试脚本
建议把调试过程中的修改点通过Dockerfile固化到容器构建正式流程,并重新测试。 确认对应的脚本、代码、流程在linux服务器上运行正常。 如果在linux服务器上运行就有问题,那么先调通以后再做容器镜像。 确认打入镜像的文件是否在正确的位置、是否有正确的权限。 训练场景主要查看自研的依赖包是否正常,查看pip
推理业务迁移评估表 通用的推理业务及LLM推理可提供下表进行业务迁移评估: 收集项 说明 实际情况(请填写) 项目名称 项目名称,例如:XXX项目。 - 使用场景 例如: 使用YOLOv5算法对工地的视频流裁帧后进行安全帽检测。 使用BertBase算法对用户在app上购买商品后的评论进行理解。