检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
export HIVE_OPTS=-Xmx1024M(具体数值请根据业务调整),并重新执行source 客户端目录/bigdata_env配置环境变量。 父主题: 使用Hive
StreamExecutionEnvironment.getExecutionEnvironment(); // 设置相关配置,并开启checkpoint功能 env.setStateBackend(new FsStateBackend("hdfs
StreamExecutionEnvironment.getExecutionEnvironment(); // 设置相关配置,并开启checkpoint功能 env.setStateBackend(new FsStateBackend("hdfs
StreamExecutionEnvironment.getExecutionEnvironment(); // 设置相关配置,并开启checkpoint功能 env.setStateBackend(new FsStateBackend("hdfs
识别空闲资源,寻找节约成本的机会。也可以根据成本分析阶段的分析结果识别成本偏高的资源,然后采取针对性的优化措施。 监控资源利用率,评估当前配置是否过高。例如:CPU、内存、云硬盘、带宽等资源的利用率。 监控闲置的资源,避免浪费。例如:未挂载的云硬盘、未绑定的EIP等。 计费模式优化
Follower只有元数据读取权限,无写入权限,Follower参与Leader选举。 Observer Observer主要用于扩展集群的查询并发能力,可选部署。Observer不参与选主,不会增加集群的选主压力。 StarRocks基本概念 在StarRocks中,数据都以表(Table)的形式进行逻辑上的描述。
JavaStreamingContext(sparkConf, new Duration(Long.parseLong(batchTime) * 1000)); //配置Streaming的CheckPoint目录。 //由于窗口概念的存在,此参数是必需的。 ssc.checkpoint(checkPointDir);
JavaStreamingContext(sparkConf, new Duration(Long.parseLong(batchTime) * 1000)); //配置Streaming的CheckPoint目录。 //由于窗口概念的存在,此参数是必需的。 ssc.checkpoint(checkPointDir);
SparkConf sparkConf = new SparkConf().setAppName("KafkaWriter"); // 配置Kafka Properties kafkaParams = new Properties(); kafkaParams.put("metadata
JavaStreamingContext(sparkConf, new Duration(Long.parseLong(batchTime) * 1000)); //配置Streaming的CheckPoint目录。 //由于窗口概念的存在,此参数是必需的。 ssc.checkpoint(checkPointDir);
JavaStreamingContext(sparkConf, new Duration(Long.parseLong(batchTime) * 1000)); //配置Streaming的CheckPoint目录。 //由于窗口概念的存在,此参数是必需的。 ssc.checkpoint(checkPointDir);
org/projects/flink/flink-docs-release-1.15。 DataStream Checkpoint 窗口 Job Pipeline 配置表 结构 Flink结构如图2所示。 图2 Flink结构 Flink整个系统包含三个部分: Client Flink Client主要给
Flink在当前版本中重点构建如下特性,其他特性继承开源社区,不做增强。 DataStream Checkpoint 窗口 Job Pipeline 配置表 架构 Flink架构如图2所示。 图2 Flink架构 Flink整个系统包含三个部分: Client Flink Client主要给
JavaStreamingContext(sparkConf, new Duration(Long.parseLong(batchSize) * 1000)); //配置Streaming的CheckPoint目录。 //由于窗口概念的存在,此参数是必需的。 ssc.checkpoint(checkPointDir);
Manager主备节点同步数据异常,pms目录下存在脏数据。 集群节点隔离后频繁上报节点故障告警。 集群退订节点过程中偶现产生误告警。 Manager上配置NAS备份进程不结束,导致节点内存升高。 NodeAgent偶现会修改nodagent.properties,有可能导致文件丢失。 MRS
properties文件,单击“Copy Path/Reference > Absolute Path”。 事务样例工程无需执行此步骤。 图2 复制配置文件绝对路径 使用clickhouse-example.properties路径替换Demo.java中getProperties()方法中proPath的路径。
以上所有的操作只要拥有Hive的admin权限以及对应的HDFS目录权限就能做相应的操作。 如果当前组件使用了Ranger进行权限控制,需基于Ranger配置相关策略进行权限管理,具体操作可参考添加Hive的Ranger访问权限策略章节。 父主题: Hive开发指南(安全模式)
Flink在当前版本中重点构建如下特性,其他特性继承开源社区,不做增强。 DataStream Checkpoint 窗口 Job Pipeline 配置表 架构 Flink架构如图2所示。 图2 Flink架构 Flink整个系统包含三个部分: Client Flink Client主要给
Flink在当前版本中重点构建如下特性,其他特性继承开源社区,不做增强。 DataStream Checkpoint 窗口 Job Pipeline 配置表 架构 Flink架构如图2所示。 图2 Flink架构 Flink整个系统包含三个部分: Client Flink Client主要给
后用户的权限为IAM系统策略定义的权限和用户在Manager自行添加角色的权限的并集。对于自定义用户,二次同步后用户的权限以Manager配置的权限为准。 系统用户:如果IAM用户所在用户组全部都绑定系统策略(RABC策略和细粒度策略均属于系统策略),则该用户为系统用户。 自定义