检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
AscendCloud-3rdLLM-6.3.905-xxx.zip 说明: 软件包名称中的xxx表示时间戳。 包含了本教程中使用到的vLLM 0.3.2推理部署代码和推理评测代码。代码包具体说明请参见模型软件包结构说明。 获取路径:Support-E 说明: 如果没有下载权限,请联系您所在企业的华为方技术支持下载获取。
本。如第一次训练版本号为“0.0.1”,下一个版本为“0.0.2”。基于训练版本可以对训练模型进行管理。当训练的模型达到目标后,再执行模型部署的操作。 父主题: 使用自动学习实现声音分类
/projects,其中{iam-endpoint}为IAM的终端节点,可以从地区和终端节点处获取。 响应示例如下,例如ModelArts部署的区域为"cn-north-4",响应消息体中查找“name”为"cn-north-4",其中projects下的“id”即为项目ID。 {
self.inv_freq.npu() 问题7:使用Qwen2-7B、Qwen2-72B模型有精度问题,重复输出感叹号 检查步骤六中4. 配置环境变量章节中,高精度模式的环境变量是否开启。 问题8:使用autoAWQ进行qwen-7b模型量化时报错TypeError: 'NoneType'
停止后会被保留。可以自定义磁盘空间,如果需要存储数据集、模型等大型文件,建议申请规格300GB+。存储支持在线按需扩容。 图2 自定义存储配置 使用Notebook将OBS数据导入云硬盘EVS 打开已创建的Notebook实例,选择Notebook的python-3.9.10,即可编辑Untitled
UTC'的毫秒数。 description String 模型描述信息。 source_type String 模型来源的类型,仅当模型为自动学习部署过来时有值,取值为“auto”。 父主题: 模型管理
本。如第一次训练版本号为“0.0.1”,下一个版本为“0.0.2”。基于训练版本可以对训练模型进行管理。当训练的模型达到目标后,再执行模型部署的操作。 父主题: 使用自动学习实现文本分类
--width ${width} \ --benchmark-csv benchmark_parallel.csv 参数说明 --host:服务部署的IP,${docker_ip}替换为宿主机实际的IP地址。 --port:推理服务端口。 --tokenizer:tokenizer路径,HuggingFace的权重路径。
本。如第一次训练版本号为“0.0.1”,下一个版本为“0.0.2”。基于训练版本可以对训练模型进行管理。当训练的模型达到目标后,再执行模型部署的操作。 父主题: 使用自动学习实现图像分类
转包周期”。 在弹出的“转包周期”页面,确认无误后单击“确定”。 图1 转包周期 选择弹性集群的购买时长,判断是否勾选“自动续费”,确认预计到期时间和配置费用后单击“去支付”。 进入支付页面,选择支付方式,确认付款,支付订单后即可完成按需转包年/包月。
选择资源的续费时长,判断是否勾选“统一到期日”,将资源的到期时间统一到各个月的某一天(详细介绍请参见统一包年/包月资源的到期日)。确认配置费用后单击“去支付”。 进入支付页面,选择支付方式,确认付款,支付订单后即可完成续费。 统一包年/包月资源的到期日 如果您持有多台到期日不
dataset createAutoLabelingTask 创建自动分组任务 dataset createAutoGroupingTask 创建自动部署任务 dataset createAutoDeployTask 导入样本到数据集 dataset importSamplesToDataset
AscendCloud-6.3.906-xxx.zip 说明: 软件包名称中的xxx表示时间戳。 包含了本教程中使用到的模型训练代码、推理部署代码和推理评测代码。代码包具体说明请参见模型软件包结构说明。 AscendSpeed是用于模型并行计算的框架,其中包含了许多模型的输入处理方法。
的权重转换操作和数据处理操作。 步骤二 修改训练超参配置 以Llama2-70b和Llama2-13b的SFT微调为例,执行脚本为0_pl_sft_70b.sh 和 0_pl_sft_13b.sh 。 修改模型训练脚本中的配置,参数详解可查看训练参数说明,其中【GBS、MBS、T
sh # 系列模型共同调用的多功能的脚本 |── install.sh # 环境部署脚本 |——src/ # 启动命令行封装脚本,在install.sh里面自动构建
--width ${width} \ --benchmark-csv benchmark_parallel.csv 参数说明 --host:服务部署的IP,${docker_ip}替换为宿主机实 际的IP地址。 --port:推理服务端口。 --tokenizer:tokenizer路径,HuggingFace的权重路径。
--width ${width} \ --benchmark-csv benchmark_parallel.csv 参数说明 --host:服务部署的IP,${docker_ip}替换为宿主机实 际的IP地址。 --port:推理服务端口。 --tokenizer:tokenizer路径,HuggingFace的权重路径。
--width ${width} \ --benchmark-csv benchmark_parallel.csv 参数说明 --host:服务部署的IP,${docker_ip}替换为宿主机实 际的IP地址。 --port:推理服务端口。 --tokenizer:tokenizer路径,HuggingFace的权重路径。
at等。本文档使用的推理接口是vllm,而llava多模态推理接口是openai-chat。 --host ${docker_ip}:服务部署的IP,${docker_ip}替换为宿主机实际的IP地址。 --port:推理服务端口8080。 --tokenizer:tokeniz
sh # 系列模型共同调用的多功能的脚本 |── install.sh # 环境部署脚本 |——src/ # 启动命令行封装脚本,在install.sh里面自动构建