检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
图片导入。需注意的是,同步数据源同时也会将OBS已删除的文件从数据集也删除,请谨慎操作。 方法3:新建数据集。将图片上传至OBS任意目录,可以直接使用这些图片目录作为数据集的输入目录,新建一个数据集。 父主题: Standard数据管理
Baichuan3-13B(PyTorch)基于DevServer训练指导 推理参考文档: 主流开源大模型(PyTorch)基于DevServer推理部署 AIGC,包名:ascendcloud-aigc Controlnet插件支持NPU推理(适配ComfyUI) Open-Clip模型昇腾适配
mistral-7b 说明: 当前版本不支持推理量化功能(W4A16,W8A8) 主流开源大模型(PyTorch)基于DevServer推理部署 AIGC,包名:AscendCloud-3rdAIGC SDXL模型: Fine-tuning微调支持Standard及DevServer模式
登录ModelArts管理控制台,在左侧菜单栏中选择“资产管理 >数据集”,进入“数据集”管理页面。 在数据集所在行,单击操作列的“导入”。 或者,您可以单击数据集名称,进入数据集“概览”页,在页面右上角单击“导入”。 在“导入”对话框中,参考如下说明填写参数,然后单击“确定”。 “数据来源”:“本地上传”
图片非RGB模式 convert to rgb 系统已将图片转成RGB格式处理,不需要用户处理。 5 type illegal 非图片文件,但可以转换成JPG convert to jpg 系统已将图片转换成JPG格式处理,不需要用户处理。 父主题: 模型训练
'*.zip') unzip_data_path = os.path.join(TEMP_CACHE_PATH, 'unzip') #也可以采用zipfile等Python包来做解压 os.system('unzip '+ zip_data_path + ' -d ' + unzip_data_path)
对于获取用户Token接口,返回如图1所示的消息头。 其中“x-subject-token”就是需要获取的用户Token。有了Token之后,您就可以使用Token认证调用其他API。 图1 获取用户Token响应消息头 响应消息体 响应消息体通常以结构化格式返回,与响应消息头中Cont
#输入python并回车,进入python环境 python 然后参考文件传输进行OBS传输操作。 下载Notebook中的文件至本地 在Notebook中开发的文件,可以下载至本地。在本地IDE的Project目录下的Notebook2.0工程单击右键,单击“Download...”将文件下载到本地。 图2
loss参数随着训练迭代周期持续性减小,并逐渐趋于稳定平缓。loss收敛图存放路径对应表1表格中output_dir参数值路径下的training_loss.png中也可以使用可视化工具TrainingLogParser查看loss收敛情况,如图2所示。 单节点训练:训练过程中的loss直接打印在窗口上。 多
loss参数随着训练迭代周期持续性减小,并逐渐趋于稳定平缓。loss收敛图存放路径对应表1表格中output_dir参数值路径下的training_loss.png中也可以使用可视化工具TrainingLogParser查看loss收敛情况,如图2所示。 单节点训练:训练过程中的loss直接打印在窗口上。 多
填写基本信息。基本信息包括“名称”、“版本”和“描述”。其中“版本”信息由系统自动生成,按“V0001”、“V0002”规则命名,用户无法修改。 您可以根据实际情况填写“名称”和“描述”信息。 设置场景类别。场景类别当前支持“图像分类”和“物体检测”。 设置数据处理类型“数据选择”,填写相
时间范围:可选择查询最近七天内任意时间段的操作事件。 在需要查看的事件左侧,单击展开该事件的详细信息。 单击需要查看的事件“操作”列的“查看事件”,可以在弹窗中查看该操作事件结构的详细信息。 更多关于云审计服务事件结构的信息,请参见《云审计服务用户指南》。 父主题: 使用CTS审计ModelArts服务
络来替代线性回归,用随机森林来代替决策树。 增加更多的特征,使输入数据具有更强的表达能力。 特征挖掘十分重要,尤其是具有强表达能力的特征,可以抵过大量的弱表达能力的特征。 特征的数量并非重点,质量才是,总之强表达能力的特征最重要。 能否挖掘出强表达能力的特征,还在于对数据本身以及具体应用场景的深刻理解,这依赖于经验。
标注和采集筛选任务,难例的发现操作是系统自动执行的,无需人工介入,仅需针对标注后的数据进行确认和修改即可,提升数据管理和标注效率。其次,您可以基于难例的情况,补充类似数据,提升数据集的丰富性,进一步提升模型训练的精度。 在数据集管理中,对难例的管理有如下场景。 智能标注后,确认难例
驱动升级 NPU升级。 节点正在执行NPU驱动升级。 A200008 节点管理 节点准入 准入检测。 节点正在进行节点准入检测,包括基本的节点配置检查和简单的业务验证。 A050933 节点管理 容错Failover 当节点具有该污点时,会将节点上容错(Failover)业务迁移走。
通过pytorch官网可查兼容版本:https://pytorch.org/get-started/previous-versions/ 如果环境中装了多版本的cuda,可以排查LD_LIBRARY_PATH中的cuda优先级,需要手动调整下。 举例:如果cuda只兼容cuda-9.1,查询到LD_LIBRAR
--workers:设置数据处理使用执行卡数量 / 启动的工作进程数。 --log-interval:是一个用于设置日志输出间隔的参数,表示输出日志的频率。在训练大规模模型时,可以通过设置这个参数来控制日志的输出。 微调数据集预处理参数说明 微调包含SFT和LoRA微调。数据集预处理脚本参数说明如下: --input:原始数据集的存放路径。
--workers:设置数据处理使用执行卡数量 / 启动的工作进程数。 --log-interval:是一个用于设置日志输出间隔的参数,表示输出日志的频率。在训练大规模模型时,可以通过设置这个参数来控制日志的输出。 输出数据预处理结果路径: 训练完成后,以 llama2-13b 为例,输出数据路径为:/home/ma
--workers:设置数据处理时,要执行的工作进程数。 --log-interval:是一个用于设置日志输出间隔的参数,表示输出日志的频率。在训练大规模模型时,可以通过设置这个参数来控制日志的输出。 输出数据预处理结果路径: 训练完成后,以 llama2-13b 为例,输出数据路径为:/home/ma
问题2:访问容器目录时提示Permission denied 由于在容器中没有相应目录的权限,会导致访问时提示Permission denied。可以在宿主机中对相关目录做权限放开,执行命令如下。 chmod 777 -R ${dir} 问题3:训练过程报错:ImportError: This