检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
flow”,进入我的Workflow页面。 在“我的发布”页签中查看发布到AI Gallery的工作流。 图1 发布的Workflow 您可以单击工作流名称,查看发布的工作流详情。 其中release_to_gallery()方法包含以下入参: 参数名称 描述 是否必填 参数类型
Gallery数字内容发布协议》和《华为云AI Gallery服务协议》后,单击“确定”完成入驻。 图1 入驻AI Gallery 注册完成后,您可以在AI Gallery中报名实践活动或发布技术文章(AI说)。 父主题: AI Gallery(旧版)
annotation_config = dict() # Manifest文件导入任务中,传入annotation_config参数可以导入标注信息 import_resp = dataset.import_data( path="/obs-gaia
k后, 可在Terminal中解压压缩包。 unzip xxx.zip #在xxx.zip压缩包所在路径直接解压 解压命令的更多使用说明可以在主流搜索引擎中查找Linux解压命令操作。 父主题: 文件上传下载
py 如果当前进程使用GPU 如果当前没有进程使用GPU 方法二: 打开文件“/resource_info/gpu_usage.json”,可以看到有哪些进程在使用GPU。 如果当前没有进程使用GPU,该文件可能不存在或为空。 父主题: 更多功能咨询
IdentityFile:本地密钥路径 - User:用户名,例如:ma-user - HostName:IP地址 - Port:端口号 vscode-server相关问题也可以使用上述的解决方法。 父主题: VS Code连接开发环境失败常见问题
IdentityFile:本地密钥路径 - User:用户名,例如:ma-user - HostName:IP地址 - Port:端口号 vscode-server相关问题也可以使用上述的解决方法。 父主题: VS Code连接开发环境失败故障处理
sh # 系列模型共同调用的多功能的脚本 |── install.sh # 环境部署脚本 |——src/ # 启动命令行封装脚本,在install.sh里面自动构建
Profiler接口可全面采集PyTorch训练场景下的性能数据,主要包括PyTorch层算子信息、CANN层算子信息、底层NPU算子信息、以及算子内存占用信息等,可以全方位分析PyTorch训练时的性能状态。 录制命令如下: 在启动训练脚本基础:步骤三:启动训练脚本 新加DO_PROFILER=1和PR
Profiler接口可全面采集PyTorch训练场景下的性能数据,主要包括PyTorch层算子信息、CANN层算子信息、底层NPU算子信息、以及算子内存占用信息等,可以全方位分析PyTorch训练时的性能状态。 录制命令如下: 在启动训练脚本基础:步骤三 启动训练脚本 新加DO_PROFILER=1和PR
Profiler接口可全面采集PyTorch训练场景下的性能数据,主要包括PyTorch层算子信息、CANN层算子信息、底层NPU算子信息、以及算子内存占用信息等,可以全方位分析PyTorch训练时的性能状态。 录制命令如下: 在启动训练脚本基础上Step3 启动训练脚本 新加DO_PROFILER=1和
kpoint机制是在模型训练的过程中,不断地保存训练结果(包括但不限于EPOCH、模型权重、优化器状态、调度器状态)。即便模型训练中断,也可以基于checkpoint接续训练。 当训练作业发生故障中断本次作业时,代码可自动从训练中断的位置接续训练,加载中断生成的checkpoin
Baichuan3-13B(PyTorch)基于DevServer训练指导 推理参考文档: 主流开源大模型(PyTorch)基于DevServer推理部署 AIGC,包名:ascendcloud-aigc Controlnet插件支持NPU推理(适配ComfyUI) Open-Clip模型昇腾适配
Profiler接口可全面采集PyTorch训练场景下的性能数据,主要包括PyTorch层算子信息、CANN层算子信息、底层NPU算子信息、以及算子内存占用信息等,可以全方位分析PyTorch训练时的性能状态。 录制命令如下: 在启动训练脚本基础:步骤三 启动训练脚本 新加DO_PROFILER=1和PR
e_path”配合使用,可以提高数据清洗的准确性。 请输入一个真实存在的OBS目录,且以obs://开头。如:obs://obs_bucket_name/folder_name n_clusters 否 auto 数据样本的种类数,默认值auto。您可以输入小于样本总数的整数或a
mistral-7b 说明: 当前版本不支持推理量化功能(W4A16,W8A8) 主流开源大模型(PyTorch)基于DevServer推理部署 AIGC,包名:AscendCloud-3rdAIGC SDXL模型: Fine-tuning微调支持Standard及DevServer模式
图片导入。需注意的是,同步数据源同时也会将OBS已删除的文件从数据集也删除,请谨慎操作。 方法3:新建数据集。将图片上传至OBS任意目录,可以直接使用这些图片目录作为数据集的输入目录,新建一个数据集。 父主题: Standard数据管理
可通过总览页面,快速判断是否有其他模块的作业或实例在运行中,并进入到相关作业或实例上,判断是否使用了专属资源池。如判断相关作业或实例可停止,则可以停止,释放出更多的资源。 图1 总览 单击进入专属资源池详情页面,查看作业列表。 观察队头是否有其他作业在排队,如果已有作业在排队,则新建的作业需要继续等待。
图片非RGB模式 convert to rgb 系统已将图片转成RGB格式处理,不需要用户处理。 5 type illegal 非图片文件,但可以转换成JPG convert to jpg 系统已将图片转换成JPG格式处理,不需要用户处理。 父主题: 模型训练
程中数值的上溢或下溢,从而提供更好的稳定性和可靠性,在大模型训练和推理以及权重存储方面更受欢迎。 FP16:用于深度学习训练和推理过程中,可以加速计算并减少内存的占用,对模型准确性的影响在大多数情况下较小。与BF16相比在处理非常大或非常小的数值时遇到困难,导致数值的精度损失。