检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
包年/包月和按需计费模式有什么区别 包年/包月和按需计费模式的区别如下: 包年/包月计费模式:包年/包月的计费模式是一种预付费方式,按订单的购买周期计费,适用于可预估资源使用周期的场景。 按需计费模式:按需付费是后付费方式,可以随时开通/关闭对应资源,支持秒级计费,系统会根据云服
所有样本文件夹(如 aa)包含的图片数量相等,例如cls1样本aa和bb、cls1样本aa和cls2的样本cc。 每个样本文件夹(如 aa)可以视为一个视频片段,其中每张图片代表视频的一个帧,将这些帧作为一个序列来学习视频分类,有助于模型学习视频的时序特征,从而进行准确的分类。 物体检测数据集标注文件说明
计费FAQ 包年/包月和按需计费模式有什么区别 包年/包月和按需计费模式哪个更划算 同一资源是否同时支持包年/包月和按需计费两种模式 包年/包月和按需计费模式是否支持互相切换 资源到期了如何续费
Failed 未满足前提条件,服务器未满足请求者在请求中设置的其中一个前提条件。 413 Request Entity Too Large 由于请求的实体过大,服务器无法处理,因此拒绝请求。为防止客户端的连续请求,服务器可能会关闭连接。如果只是服务器暂时无法处理,则会包含一个Retry-After的响应信息。
本节介绍盘古大模型服务在使用过程中的约束和限制。 规格限制 盘古大模型服务的规格限制详见表1。 表1 规格限制 资产、资源类型 规格 说明 模型资产、数据资源、训练资源、推理资源 所有按需计费、包年/包月中的模型资产、数据资源、训练资源、推理资源。 购买的所有类型的资产与资源仅支持在西南-贵阳一区域使用。
经完成的预训练的基础上继续训练模型。增量预训练旨在使模型能够适应新的领域或数据需求,保持其长期的有效性和准确性。 微调阶段:基于预训练的成果,微调阶段通过在特定领域的数据集上进一步训练,使模型能够更有效地应对具体的任务需求。这一阶段使模型能够精确执行如文案生成、代码生成和专业问答
提示词工程是一项将知识、技巧和直觉结合的工作,需要通过不断实践实现模型输出效果的提升。提示词和模型之间存在着密切关系,本指南结合了大模型通用的提示工程技巧以及盘古大模型的调优实践经验,总结的一些技巧和方法更为适合基于盘古大模型的提示工程。 本文的方法论及技巧部分使用了较为简单的任务作为示例,以
值和气候平均值的差异,其值范围从-1到+1,值越接近+1表示预报与观测的一致性越好,值为0表示没有相关性,而负值则表示反向相关。 RQE 衡量预测值与真实值之间差距的指标。它是所有单个观测的相对误差的平方和。该值越小,代表模型性能越好。 获取训练日志 单击训练任务名称,可以在“日
着深远的影响。它是重要的水资源,提供了大量的饮用水和灌溉水。同时,长江也是中国重要的内河航道,对于货物运输和经济发展具有重要作用。长江中的鱼类种类繁多,是中国淡水渔业的重要基地之一。长江中的典型鱼类包括:1. **中华鲟**:这是一种生活在长江中上游的大型鱼类,以其巨大的体型和古
安全性是华为云与您的共同责任,如图1所示。 华为云:负责云服务自身的安全,提供安全的云。华为云的安全责任在于保障其所提供的IaaS、PaaS和SaaS类云服务自身的安全,涵盖华为云数据中心的物理环境设施和运行其上的基础服务、平台服务、应用服务等。这不仅包括华为云基础设施和各项云服务技术的安全功能和性能本身,也包
Models)通常指的是具有海量参数和复杂结构的深度学习模型,广泛应用于自然语言处理(NLP)等领域。开发一个大模型的流程可以分为以下几个主要步骤: 数据集准备:大模型的性能往往依赖于大量的训练数据。因此,数据集准备是模型开发的第一步。首先,需要根据业务需求收集相关的原始数据,确保数据的覆盖面和多样性。例
List<String> 待统计Token数的字符串。List长度必须为奇数。 with_prompt 否 Boolean 是否仅统计输入字符的Token数 true:仅统计输入字符串的Token数; false:统计输入字符串和推理过程产生字符的总Token数。 响应参数 表4 响应Body参数
POST:请求服务器新增资源或执行特殊操作。 DELETE:请求服务器删除指定资源,如删除对象等。 HEAD:请求服务器资源头部。 PATCH:请求服务器更新资源的部分内容。当资源不存在的时候,PATCH可能会去创建一个新的资源。 在接口的URI部分,请求方法为“POST”,例如: POST
请参见图1。 图1 查看训练指标 表2 训练指标说明 模型 训练指标 指标说明 CV大模型 训练损失值 训练损失值是一种衡量模型预测结果和真实结果之间的差距的指标,通常情况下越小越好。 一般来说,一个正常的Loss曲线应该是单调递减的,即随着训练的进行,Loss值不断减小,直到收敛到一个较小的值。
高质量数据是推动大模型不断迭代和优化的根基,它的质量直接决定了模型的性能、泛化能力以及应用场景的适配性。只有通过系统化地准备和处理数据,才能提取出有价值的信息,从而更好地支持模型训练。因此,数据的采集、清洗、标注、评估、发布等环节,成为数据开发中不可或缺的重要步骤。 数据工程操作流程见图1、表1。 图1
可以尝试修改参数并查看模型效果。以修改“核采样”参数为例,核采样控制生成文本的多样性和质量: 当“核采样”参数设置为1时,保持其他参数不变,单击“重新生成”,再单击“重新生成”,观察模型前后两次回复内容的多样性。 图2 “核采样”参数为1的生成结果1 图3 “核采样”参数为1的生成结果2 将“核采样”参数调小至0
拟合度 拟合度是一种衡量模型对数据拟合程度的指标。数值范围为0到1,数值越接近1,表示模型对数据的拟合程度越好。 均方根误差 均方根误差是预测值与真实值之间差异的平方和的均值的平方根。它用于衡量模型预测值与实际值之间的偏差,数值越小,表明模型预测的精度越高。 平均绝对误差 平均绝对误差
请参见表2。 图1 查看训练指标 表2 训练指标说明 模型 训练指标 指标说明 NLP大模型 训练损失值 训练损失值是一种衡量模型预测结果和真实结果之间的差距的指标,通常情况下越小越好。 一般来说,一个正常的Loss曲线应该是单调递减的,即随着训练的进行,Loss值不断减小,直到收敛到一个较小的值。
可以将多个不同频率的噪音叠加在一起,以增加噪音的复杂度和细节。每个频率的噪音称为一个octave,而叠加的octave数越多,噪音的复杂度也就越高。 取值范围:[1, 10)。 ensemble_noise_perlin_x 否 Double 用于选择集合预报的Perlin加噪x经度方向的尺度。
用户Token。 用于获取操作API的权限。获取Token接口响应消息头中X-Subject-Token的值即为Token。 Content-Type 是 String 发送的实体的MIME类型,参数值为“application/json”。 使用AppCode认证方式的请求Header参数见表2。