检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
图1 盘古大模型套件使用流程 表1 使用流程说明 流程 子流程 说明 操作指导 准备工作 注册华为账号并开通华为云 在使用华为云服务之前您需要注册华为账号并开通华为云。 注册华为账号并开通华为云 购买盘古大模型套件 购买盘古系列大模型及推理资产。
审计 云审计服务(Cloud Trace Service,CTS)是华为云安全解决方案中专业的日志审计服务,提供对各种云资源操作记录的收集、存储和查询功能,可用于支撑安全分析、合规审计、资源跟踪和问题定位等常见应用场景。
模型的输入和输出的文本都会被转换成token,然后根据模型的概率分布进行采样或者计算。 presence_penalty 否 Float 用于调整模型对新Token的处理方式。即如果一个Token已经在之前的文本中出现过,那么模型在生成这个Token时会受到一定的惩罚。
准备工作 注册华为账号并开通华为云,并完成实名认证,账号不能处于欠费或冻结状态。 检查开发环境要求,确认本地已具备开发环境。 开通盘古大模型API。 登录盘古大模型套件平台。 在左侧导航栏中选择“服务管理”,在相应服务的操作列单击“查看详情”,可在服务列表中申请需要开通的服务。
授权使用华为云内容审核,有效拦截大模型输入输出的有害信息,保障模型调用安全。 授权后,在调用盘古大模型能力时,模型的输入和输出将分别调用一次内容审核服务,该服务为付费项,用户可按需购买。 若不使用,您也可以自行对接第三方内容审核服务。
其核心能力依托于盘古大模型套件平台,该平台是华为云推出的集数据管理、模型训练和模型部署为一体的一站式大模型开发与应用平台。平台提供了包括盘古大模型在内的多种大模型服务,支持大模型的定制开发,并提供覆盖全生命周期的大模型工具链。
解决方案:请联系华为云排查环境变量ak、sk。 图4 Decrypt failed报错 父主题: 训练盘古大模型
"password": { "user": { "name": "username", //IAM用户名 "password": "********", //华为云账号密码
历史对话保留轮数 选择“多轮对话”功能时具备此参数,表示系统能够记忆的历史对话数。 父主题: 调用盘古大模型
通过setMaxIterations可以设置最大迭代次数,控制Agent子规划的最大迭代步数,防止无限制的迭代或出现死循环情况。 Agent使用的模型必须为Pangu-NLP-N2-Default模型,或其衍生模型,使用通用模型或其他模型无法运行。
"password": { "user": { "name": "username", //IAM用户名 "password": "********", //华为云账号密码
表2 部署实例量与推理单元数关系 模型类型 推理资源 盘古-NLP-N1系列模型 4K版本: 当部署一个实例时,占用0.125个推理单元。 32K版本: 当部署一个实例时,占用0.125个推理单元。 128K版本: 当部署一个实例时,占用1个推理单元。
公有云API同时支持使用AK/SK认证,AK/SK认证是使用SDK对请求进行签名,签名过程会自动往请求中添加Authorization(签名认证信息)和X-Sdk-Date(请求发送的时间)请求头。AK/SK认证的详细说明请参见:AK/SK。
一个比较常见的方法是,将无监督的文本按照章节、段落、字符数进行切片,让模型基于这个片段生成问答对,再将段落、问题和答案三者组装为有监督数据。使用模型构建的优点是数据丰富度更高,缺点是成本较高。 当您将无监督数据构建为有监督数据时,请尽可能保证数据的多样性。
历史对话保留轮数 选择要包含在每个新API请求中的过去消息数。这有助于为新用户查询提供模型上下文。参数设置为10,表示包括5个用户查询和5个系统响应。该参数只涉及多轮对话功能。
历史对话保留轮数 选择要包含在每个新API请求中的过去消息数。这有助于为新用户查询提供模型上下文。参数设置为10,表示包括5个用户查询和5个系统响应。该参数只涉及多轮对话功能。
"password": { "user": { "name": "username", //IAM用户名 "password": "********", //华为云账号密码
"password": { "user": { "name": "username", //IAM用户名 "password": "********", //华为云账号密码
本场景的一个Loss曲线示例如下: 图1 Loss曲线 通过观察,Loss曲线随着迭代步数的增加呈下降趋势直至稳定,证明整个训练状态是正常的。
本场景的一个Loss曲线示例如下: 图2 query改写/中控模型微调时的Loss曲线 图3 问答模型微调时的Loss曲线 通过观察,Loss曲线随着迭代步数的增加呈下降趋势直至稳定,证明整个训练状态是正常的。