检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
host耗时;且支持动态shape。 Torch.compile Torch.dynamo构图,转ascend-GE后端推理;使用静态分档。 实例复用 Multi-lora 多lora挂载,多个不同微调模型共用一份权重同时部署。 控制输出 Guided Decoding 通过特定模式控制模型输出。
AscendCloud-LLM的llm_tools/llm_evaluation目录中,代码目录结构如下。目前使用的opencompass版本是0.2.6。 benchmark_eval ├──opencompass.sh #运行opencompass脚本 ├──install
ModelArts入门实践 本章节列举了一些常用的实践案例,方便您快速了解并使用ModelArts完成AI开发。 表1 常用最佳实践 分类 实践案例 描述 适用人群 ModelArts Standard模型训练 基于ModelArts Standard上运行GPU训练任务 本案例介绍了如何使用ModelArts
附录:config.json文件 config.json文件用于推理服务启动时,需要修改以下参数,2台机器的每个容器中config.json文件内容一致。 ipAddress:主节点IP地址,即rank_table_file.json文件中的server_id。 manageme
${container_draft_model_path}同时使用。 --use-v2-block-manager:vllm启动时使用V2版本的BlockSpaceManger来管理KVCache索引,若不使用该功能,则无需配置。注意:若使用投机推理功能,必须开启此参数。 --s
兆字节(Megabytes) NA NA NA NPU整体利用率 ma_container_npu_general_util 昇腾系列AI处理器NPU整体利用率(驱动版本24.1.RC2及其以后支持) 百分比(Percent) 0~100% NA NA NA AI处理器 AI处理器错误码 ma_contai
e_encoder模型为例,在pipeline代码中查找vae_encoder推理调用的地方,然后修改为对应的MindSpore Lite版本的推理接口模型。 使用MindSpore Lite Runtime接口替换onnx Runtime接口。 # pipeline_onnx_
Torch模型转换为onnx模型。 方式二:对于提供了onnx模型的仓库,可以直接下载onnx模型。 通过git下载diffusers对应版本的源码。 git clone https://github.com/huggingface/diffusers.git -b v0.11.1
支持协议:选择“TCP”。 公网IP类型:选择已创建的弹性公网IP。 公网端口:建议选择区间为20000-30000,保证该端口号不冲突。 实例类型:单击“服务器”,选择Server服务器。 网卡:选择服务器网卡。。 私网端口:端口号22。 单击“确定”。 父主题: Lite Server资源配置
AscendCloud-LLM的llm_tools/llm_evaluation目录中,代码目录结构如下。目前使用的opencompass版本是0.2.6 benchmark_eval ├──opencompass.sh #运行opencompass脚本 ├──install
configMap: name: prometheus-config 执行如下命令创建Prometheus实例,并查看创建情况: $ kubectl create -f prometheus-deployment.yml service "prometheus"
否 Integer Execution执行的运行时长。 type 否 String 节点的类型。 instance_id 否 String 实例ID。 status 否 String 节点的状态。枚举值如下: init:初始化 wait_inputs:等待输入 pending:等待
准备数据 本教程使用到的训练数据集是Alpaca数据集。您也可以自行准备数据集。 Alpaca数据集 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令
准备数据 本教程使用到的训练数据集是Alpaca数据集。您也可以自行准备数据集。 Alpaca数据集 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令
准备数据 本教程使用到的训练数据集是Alpaca数据集。您也可以自行准备数据集。 Alpaca数据集 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令
准备数据 本教程使用到的训练数据集是Alpaca数据集。您也可以自行准备数据集。 Alpaca数据集 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令
128 mixtral-8x7b 4 8 2 32 gemma-2b 1 64 1 128 gemma-7b 1 8 1 32 说明:机器型号规格以卡数*显存大小为单位,如4*64GB代表4张64GB显存的NPU卡。 父主题: 主流开源大模型基于Standard适配PyTorch NPU推理指导(6
OUTPUT_NAME:输出结果文件名称, 默认llava。 ASCEND_RT_VISIBLE_DEVICES:表示支持多个模型服务实例,同时支持模型并行,如 0,1:2,3 默认0卡。 QUANTIZATION:为量化选项,不传入默认为None即不启用量化;支持w4a16,需配套对应的权重使用。
metricName String 指标名称。 namespace String 指标命名空间。可选值如下: PAAS.CONTAINER:组件指标、实例指标、进程指标和容器指标的命名空间 PAAS.NODE: 主机指标、网络指标、磁盘指标和文件系统指标的命名空间 PAAS.SLA:SLA指标的命名空间
准备代码 本教程中用到的训练推理代码和如下表所示,请提前准备好。 获取模型软件包和权重文件 本方案支持的模型对应的软件和依赖包获取地址如表1所示,模型列表、对应的开源权重获取地址如表2所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-6