检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
NLP大模型支持接入的数据集类型 盘古NLP大模型仅支持接入文本类数据集,数据集文件内容包括:预训练文本、单轮问答、多轮问答、带人设单轮问答、带人设多轮问答等,不同训练方式所需要使用的数据见表1,该数据集格式要求请参见文本类数据集格式要求。 表1 训练NLP大模型数据集类型要求 基模型 训练场景
别储层和非储层,提高勘探和开发效率。进行岩性识别,例如对不同岩石类型进行分类,帮助识别岩石的性质和特征,指导钻井和开采。进行流体识别,例如根据测井数据,识别储层中的油、气、水等流体类型。 2024年12月发布的版本,支持分析历史数据中的特征与类别的关系,学习出一种映射规则或函数,
后将其部署和调用,用于实际应用。 CV大模型选择建议 选择合适的CV大模型类型有助于提升训练任务的准确程度。您可以根据模型适用场景,选择合适的模型,从而提高模型的整体效果,详见表1。 表1 CV大模型的类型 模型名称 适用场景 说明 Pangu-CV-ObjectDetection-N-2
01 了解 了解盘古大模型的概念、优势、应用场景以及模型能力与规格,您将更全面地掌握其强大功能,助力您在不同领域实现创新,加速业务智能化升级。 产品介绍 什么是盘古大模型 产品优势 应用场景 产品功能 模型能力与规格 基础知识 03 入门 通过快速入门引导,您将快速熟悉平台的核心
大模型使用类问题 盘古大模型是否可以自定义人设 如何将本地的数据上传至平台 导入数据过程中,为什么无法选中OBS的具体文件进行上传 如何查看预置模型的历史版本
个,示例如下所示: 具体的json标注文件参考: { 'version': 'dataset_name_v.x.x',// 数据集版本信息。 'classes': [category1',category2', ...],// 所有类别名称的列表,每个类别对应一个
可以增大模型回答生成的长度,避免生成异常截断。请注意,该参数值存在上限,请结合目标任务的实际需要以及模型支持的长度限制来调整。 模型规格:不同规格的模型支持的长度不同,若目标任务本身需要生成的长度已经超过模型上限,建议您替换可支持更长长度的模型。 数据质量:请检查训练数据中是否存
为什么微调后的盘古大模型总是重复相同的回答 当您将微调的模型部署以后,输入一个与目标任务同属的问题,模型生成了复读机式的结果,即回答中反复出现某一句话或某几句话。这种情况可能是由于以下几个原因导致的,建议您依次排查: 推理参数设置:请检查推理参数中的“话题重复度控制”或“温度”或
说明 训练配置 模型来源 选择“盘古大模型”。 模型类型 选择“预测大模型”。 训练类型 选择“微调”。 基础模型 选择所需微调的基础模型。 训练参数 数据集 训练数据集。 类别特征列 指定使用LabelEncoder处理的字符串类型类别特征的列表。格式为["列名1","列名2"],
与安全性。 模型资产:平台提供的模型资产涵盖了预置或训练后发布的模型,所有这些模型将存放于空间资产中进行统一管理。用户可查看预置模型的历史版本和操作记录,还可以执行模型的进一步操作,包括训练、压缩、部署等。此外,平台支持导出和导入盘古大模型的功能,使用户能够将其他局点的盘古大模型迁移到本局点,便于模型资源共享。
服务器接收,且仍未被拒绝。 101 Switching Protocols 切换协议。只能切换到更高级的协议。 例如,切换到HTTPS的新版本协议。 200 OK 服务器已成功处理了请求。 201 Created 创建类的请求完全成功。 202 Accepted 已经接受请求,但未处理完成。
Prompt设置:请检查您使用的Prompt,对于同一个目标任务,建议在推理阶段使用和训练数据相同或相似的PROMPT,才能发挥出模型的最佳效果。 模型规格:理论上模型的参数规模越大,模型能学到的知识就越多,能学会的知识就更难,若目标任务本身难度较大,建议您替换参数规模更大的模型。 父主题: 大模型微调训练类问题
root: Train valid number is 0. 该日志表示数据集中的有效样本量为0,可能有如下原因: 数据未标注。 标注的数据不符合规格。 请检查数据是否已标注或标注是否符合算法要求。 父主题: 训练科学计算大模型
要求的信息。 使用规则构建的优点是快速且成本低,缺点是数据多样性较低。 基于大模型的数据泛化:您可以通过调用大模型(比如盘古提供的任意一个规格的基础功能模型)来获取有监督场景。一个比较常见的方法是,将无监督的文本按照章节、段落、字符数进行切片,让模型基于这个片段生成问答对,再将段
温度主要用于控制模型输出的随机性和创造性。温度越高,输出的随机性和创造性越高;温度越低,输出结果越可以被预测,确定性相对也就越高。 您可根据真实的任务类型进行调整。一般来说,如果目标任务的需要生成更具创造性的内容,可以使用较高的温度,反之如果目标任务的需要生成更为确定的内容,可以使用较低的温度。
root: Train valid number is 0. 该日志表示数据集中的有效样本量为0,可能有如下原因: 数据未标注。 标注的数据不符合规格。 请检查数据是否已标注或标注是否符合算法要求。 训练日志提示“ValueError: label_map not match” 训练日志中提示“ValueError:
root: Train valid number is 0. 该日志表示数据集中的有效样本量为0,可能有如下原因: 数据未标注。 标注的数据不符合规格。 请检查数据是否已标注或标注是否符合算法要求。 训练日志提示“ValueError: label_map not match” 训练日志中提示“ValueError:
root: Train valid number is 0. 该日志表示数据集中的有效样本量为0,可能有如下原因: 数据未标注。 标注的数据不符合规格。 请检查数据是否已标注或标注是否符合算法要求。 训练日志提示“ValueError: label_map not match” 训练日志中提示“ValueError:
模型资产:模型资产包括用户试用、订购或在平台上训练后发布的模型,这些模型统一存储在模型资产中,便于集中管理。用户可以查看模型的所有历史版本及操作记录,从而了解模型的演变过程。同时,平台支持一系列便捷的模型操作,如模型训练、压缩和部署,帮助用户简化模型开发和应用流程。此外,平台
最大值:不同模型支持的token长度,请参见《产品介绍》“模型能力与规格 > 盘古NLP大模型能力与规格”章节。 缺省值:默认部署时token长度最大值,请参见《产品介绍》“模型能力与规格 > 盘古NLP大模型能力与规格”章节。 说明: token是指模型处理和生成文本的基本单位。t