检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
则进行清洗。 训练参数设置:若数据质量存在问题,且因训练参数设置的不合理而导致过拟合,该现象会更加明显。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,适当降低这些参数的值,降低过拟合的风险。 推理参数设置:请检查推理参数中的“温度”或“核采样”等参数的设置,适当减小其
个原因导致的,建议您依次排查: 训练参数设置:您可以通过绘制Loss曲线查询来确认模型的训练过程是否出现了问题,这种情况大概率是由于训练参数设置的不合理而导致了过拟合。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,适当降低这些参数的值,降低过拟合的风险。 数据质量:请
盘古大模型是否可以自定义人设 大模型支持设置人设,在用户调用文本对话(chat/completions)API时,可以将“role”参数设置为system,让模型按预设的人设风格回答问题。 以下示例要求模型以幼儿园老师的风格回答问题: { "messages": [
模型开发:模型开发是大模型项目中的核心阶段,通常包括以下步骤: 选择合适的模型:根据任务目标选择适当的模型。 模型训练:使用处理后的数据集训练模型。 超参数调优:选择合适的学习率、批次大小等超参数,确保模型在训练过程中能够快速收敛并取得良好的性能。 开发阶段的关键是平衡模型的复杂度和计算资源,避免过拟合,同时保证
如何判断盘古大模型训练状态是否正常 判断训练状态是否正常,通常可以通过观察训练过程中Loss(损失函数值)的变化趋势。损失函数是一种衡量模型预测结果和真实结果之间的差距的指标,正常情况下越小越好。 您可以从平台的训练日志中获取到每一步的Loss,并绘制成Loss曲线,来观察其变化
精准率和召回率的调和平均数,数值越高,表明模型性能越好。 BLEU-1 模型生成句子与实际句子在单字层面的匹配度,数值越高,表明模型性能越好。 BLEU-2 模型生成句子与实际句子在词组层面的匹配度,数值越高,表明模型性能越好。 BLEU-4 模型生成结果和实际句子的加权平均精确率,数值越高,表明模型性能越好。
平台支持气象类数据集的加工操作,气象类加工算子能力清单见表1。 表1 气象类清洗算子能力清单 算子分类 算子名称 算子描述 科学计算 气象预处理 将二进制格式的气象数据文件转换成结构化JSON数据。 父主题: 数据集清洗算子介绍
在盘古大模型中,以N1系列模型为例,盘古1token≈0.75个英文单词,1token≈1.5汉字。不同模型的具体情况详见表1。 表1 token比 模型规格 token比(token/英文单词) token比(token/汉字) N1系列模型 0.75 1.5 N2系列模型 0.88 1
填空:从段落随机掩盖一个或多个词语、句子、段落,再将段落完形填空。 若您的无监督文档没有任何结构化信息,可以将有监督的问题设置为“以下的文章中有一些词语/句子/段落缺失,文章如下:xxx。请结合文章内容,将缺失的信息补充完整。”,再将回答设置为符合要求的信息。 使用规则构建的优点是快速且成本低,缺点是数据多样性较低。
使用服务的其他功能。 通过IAM,您可以在华为云账号中给员工创建IAM用户(子用户),并授权控制他们对华为云资源的访问范围。例如,您的员工中有负责软件开发的人员,您希望他们拥有接口的调用权限,但是不希望他们拥有训练模型或者访问训练数据的权限,那么您可以先创建一个IAM用户,并设置
用路径,详见获取调用路径。 填写请求Header参数。 参数名为Content-Type,参数值为application/json。 参数名为X-Auth-Token,参数值为步骤1中获取的Token值。 参数名为stream,参数值为true。当前应用仅支持流式调用。 在Postman中选择“Body
2024年11月发布的版本,支持8K序列长度训练,4K/32K序列长度推理。全量微调、LoRA微调8个训练单元起训,1个推理单元即可部署。 Pangu-NLP-N1-Chat-128K-20241130 128K 4K 2024年11月发布的版本,仅支持128K序列长度推理。 Pangu-NLP-N2-Base-20241030
执行深度定制用户回复改写(前处理)失败时触发该错误码。 可检查前处理护栏代码。 101049 执行深度定制大模型生成的参数取值改写(后处理)失败时触发该错误码。 可检查后处理护栏代码。 101050 执行默认护栏(时间参数解析)失败时触发该错误码。 可检查支持处理的时间类型是否超出支持范围。 102053 提示词模板有误时触发该错误码。
不可用的低质量的数据。 训练模型 自监督训练: 不涉及 有监督微调: 该场景采用下表中的微调参数进行微调,您可以在平台中参考如下参数进行训练: 表2 问答模型的微调核心参数设置 训练参数 设置值 数据批量大小(batch_size) 4 训练轮数(epoch) 3 学习率(learning_rate)
{location}}的值,来获得模型回答,提升评测效率。 同时,撰写提示词过程中,可以通过设置模型参数来控制模型的生成行为,如调整温度、核采样、最大Token限制等参数。模型参数的设置会影响模型的生成质量和多样性,因此需要根据不同的场景进行选择。 登录ModelArts Studio大模型开发平台,进入所需空间。
是否提取”功能,可额外配置中文名称。 参数校验:可自定义参数校验规则对输出参数规范性进行校验。规则包括参数名称、校验类型及校验规则。 是否提取:开启后该参数必须提取到或使用默认值,关闭则该参数允许为空或者使用默认值。 反思:在参数提取之后,会根据参数描述与用户指令,对打开反思开关的参数,独立调用大模型进行反思并修正当前提取的结果。
步骤7:调试应用 创建应用后,平台支持对应用执行过程的进行预览与调试。 调试应用的步骤如下: 在页面右上角单击,参考表2配置大模型参数。 表2 大模型参数配置 参数 说明 模型选择 选择要使用的大模型,不同的模型效果存在差异。 该模型需提前部署,步骤请参见创建NLP大模型部署任务。 模式选择
设计任务要求 要求分点列举: 要求较多时需要分点列举,可以使用首先\然后,或1\2\3序号分点提出要求。每个要求步骤之间最好换行(\n)分隔断句,单个要求包含一项内容,不能太长。 正负向要求分离: 正负向要求不要掺杂着写,可以先全部列完正向要求,再列负向要求,比如“你必须xx
评分,识别运动幅度过快(如>100光流)或过慢(如≤2光流)的视频,数值越大表示运动过快。 质量基础评分 对视频的基础质量(清晰度、亮度、模糊、画面抖动重影、低光过曝、花屏等)进行评分。分值范围(0, 1),数值越高质量越好,评分>0.05可认为是视频基础质量较高的视频。 美学评分
'EQUAL-TO'}]}}"} 判断数据中的JSON参数是否与Query中的参数对应上。 训练模型 自监督训练: 不涉及 有监督微调: 该场景采用了下表中的微调参数进行微调,您可以在平台中参考如下参数进行训练: 表1 微调核心参数设置 训练参数 设置值 数据批量大小(batch_size)