检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
下载Megatron-LM、MindSpeed、ModelLink源码,并将以上源码打包至镜像环境中。 若用户希望修改源码,则需要使用新镜像创建容器,在容器内的/home/ma-user工作目录中访问并编辑以上源码文件。编辑完成后重新构建新镜像。 注意:训练作业的资源池以及ECS都需要联通外网,否则会安装和下载失败。
clone下载Megatron-LM、MindSpeed、ModelLink源码(install.sh中会自动下载配套版本,如果手动下载源码还需修改版本)至llm_train/AscendSpeed文件夹中。下载的源码文件结构如下: |——AscendCloud-LLM |──llm_train
clone下载Megatron-LM、MindSpeed、ModelLink源码(install.sh中会自动下载配套版本,如果手动下载源码还需修改版本)至llm_train/AscendSpeed文件夹中。下载的源码文件结构如下: |——AscendCloud-LLM |──llm_train
clone下载Megatron-LM、MindSpeed、ModelLink源码(install.sh中会自动下载配套版本,如果手动下载源码还需修改版本)至llm_train/AscendSpeed文件夹中。下载的源码文件结构如下: |——AscendCloud-LLM |──llm_train
clone下载Megatron-LM、MindSpeed、ModelLink源码(install.sh中会自动下载配套版本,如果手动下载源码还需修改版本)至llm_train/AscendSpeed文件夹中。下载的源码文件结构如下: |——AscendCloud-LLM |──llm_train
下载ComfyUI软件包。 下载ComfyUI源码并切换分支。 git clone https://github.com/comfyanonymous/ComfyUI.git cd ComfyUI git checkout a82fae23757 如果上述方法无法下载ComfyUI源码,可参考如下操作,手
docker exec -it ${container_name} bash Step4 下载并安装Open-clip源码包 从官网下载Open-clip源码包。 git clone https://github.com/mlfoundations/open_clip.git cd
false git clone代码仓,以diffusers为例(注意替换用户个人开发目录)。 # git clone diffusers源码,-b参数可指定分支,注意替换用户个人开发目录 cd /home_host/用户个人目录 mkdir sd cd sd git clone
huaweicloud.com/home中,搜索pypi ,也可以查看“pip.conf”文件内容。 下载“torch*.whl ”文件。 在网站“https://download.pytorch.org/whl/torch_stable.html”搜索并下载如下whl文件。 torch-1
huaweicloud.com/home中,搜索pypi ,也可以查看“pip.conf”文件内容。 下载“torch*.whl ”文件。 在网站“https://download.pytorch.org/whl/torch_stable.html”搜索并下载如下whl文件。 torch-1
├──llm_inference # 推理代码 ├──ascend_vllm ├── vllm_npu # 推理源码 ├── ascend_vllm-0.4.2-py3-none-any.whl # 推理安装包
1。参考如下命令编写Dockerfile文件。镜像地址{image_url}请参见表2。 FROM {image_url} # 下载sd webui源码 RUN mkdir /home/ma-user/sdwebui RUN cd /home/ma-user/sdwebui && git config
├──llm_inference # 推理代码 ├──ascend_vllm ├── vllm_npu # 推理源码 ├── ascend_vllm-0.6.0-py3-none-any.whl # 推理安装包
├──llm_inference # 推理代码 ├──ascend_vllm ├── vllm_npu # 推理源码 ├── ascend_vllm-0.5.0-py3-none-any.whl # 推理安装包
├──llm_inference # 推理代码 ├──ascend_vllm ├── vllm_npu # 推理源码 ├── ascend_vllm-0.6.0-py3-none-any.whl # 推理安装包
├──llm_inference # 推理代码 ├──ascend_vllm ├── vllm_npu # 推理源码 ├── ascend_vllm-0.5.0-py3-none-any.whl # 推理安装包
├──llm_inference # 推理代码 ├──ascend_vllm ├── vllm_npu # 推理源码 ├── ascend_vllm-0.6.3-py3-none-any.whl # 推理安装包
├──llm_inference # 推理代码 ├──ascend_vllm ├── vllm_npu # 推理源码 ├── ascend_vllm-0.6.0-py3-none-any.whl # 推理安装包
├──llm_inference # 推理代码 ├──ascend_vllm ├── vllm_npu # 推理源码 ├── ascend_vllm-0.6.0-py3-none-any.whl # 推理安装包
“obs://test-modelarts/tensorflow/log/” 用于存储训练日志文件。 Step2 创建数据集并上传至OBS 使用网站https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz,下载“mnist