检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
部署在线服务 部署在线服务包括: 已部署为在线服务的初始化。 部署在线服务predictor。 部署批量服务transformer。 部署服务返回服务对象Predictor,其属性包括服务管理章节下的所有功能。 示例代码 在ModelArts notebook平台,Session鉴权无需输入鉴权参数
部署模型为在线服务 模型准备完成后,您可以将模型部署为在线服务,对在线服务进行预测和调用。 约束与限制 单个用户最多可创建20个在线服务。 前提条件 数据已完成准备:已在ModelArts中创建状态“正常”可用的模型。 由于在线运行需消耗资源,确保账户未欠费。 部署服务操作需要镜像
在云监控平台查看在线服务性能指标 ModelArts支持的监控指标 为使用户更好地掌握自己的ModelArts在线服务和对应模型负载的运行状态,云服务平台提供了云监控。您可以使用该服务监控您的ModelArts在线服务和对应模型负载,执行自动实时监控、告警和通知操作,帮助您更好地了解服务和模型的各项性能指标
创建Workflow数据集标注节点 功能介绍 通过对ModelArts数据集能力进行封装,实现数据集的标注功能。数据集标注节点主要用于创建标注任务或对已有的标注任务进行卡点标注,主要用于需要对数据进行人工标注的场景。 属性总览 您可以使用LabelingStep来构建数据集标注节点
多模态 什么是多模态 多模态(Multimodality)是集成和处理两种或两种以上不同类型的信息或数据的方法和技术。具体来说,在机器学习和人工智能领域,多模态涉及的数据类型通常包括但不限于文本、图像、视频、音频和传感器数据。 多模态的主要目标是利用来自多种模态的信息来提升任务的表现力
FLUX.1基于DevSever适配PyTorch NPU Fintune&Lora训练指导(6.3.911) Flux是一种基于扩散过程的图像生成模型,应用于文生图场景,能够帮助用户生成图像。 方案概览 本方案介绍了在ModelArts Lite DevServer上使用昇腾计算资源
在Notebook调试环境中部署推理服务 在ModelArts的开发环境Notebook中可以部署推理服务进行调试。 Step1 准备Notebook 参考准备Notebook完成Notebook的创建,并打开Notebook。 Step2 准备权重文件 将OBS中的模型权重上传到
准备代码 本教程中用到的训练推理代码和如下表所示,请提前准备好。 获取模型软件包和权重文件 本方案支持的模型对应的软件和依赖包获取地址如表1所示,模型列表、对应的开源权重获取地址如表1所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud
准备代码 本教程中用到的训练推理代码和如下表所示,请提前准备好。 获取模型软件包和权重文件 本方案支持的模型对应的软件和依赖包获取地址如表1所示,模型列表、对应的开源权重获取地址如表1所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud
Bert基于DevServer适配MindSpore Lite推理指导(6.3.910) 方案概览 本方案介绍了在ModelArts的DevServer上使用昇腾Atlas 300I Duo推理卡计算资源,部署Bert-base-chinese模型推理的详细过程。完成本方案的部署,
从0制作自定义镜像用于创建训练作业(Pytorch+Ascend) 本章节介绍如何从0到1制作镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎是PyTorch,训练使用的资源是专属资源池的Ascend芯片。 准备工作 准备一套可以连接外部网络,装有Linux
创建数据集 功能介绍 创建数据集。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI POST /v2/{project_id}/datasets 表1 路径参数 参数
创建训练作业 示例代码 在ModelArts notebook平台,Session鉴权无需输入鉴权参数。其它平台的Session鉴权请参见Session鉴权。 ModelArts SDK不支持通过在AI Gallery中订阅的算法创建训练作业。 示例一:提交常用框架训练作业 Estimator
SD1.5基于DevServer适配PyTorch NPU Finetune训练指导(6.3.904) Stable Diffusion(简称SD)是一种基于Latent Diffusion(潜在扩散)模型,应用于文生图场景。对于输入的文字,它将会通过一个文本编码器将其转换为文本嵌入
ModelArts最佳实践案例列表 在最佳实践文档中,提供了针对多种场景、多种AI引擎的ModelArts案例,方便您通过如下案例快速了解使用ModelArts完成AI开发的流程和操作。 LLM大语言模型训练推理场景 样例 场景 说明 主流开源大模型基于DevServer适配ModelLink
Qwen-VL基于DevServer适配PyTorch NPU的Finetune训练指导(6.3.912) Qwen-VL是规模视觉语言模型,可以以图像、文本、检测框作为输入,并以文本和检测框作为输出。具有强大的性能、多语言对话、多图交错对话、支持中文开放域定位、细粒度识别和理解等特点
Yaml配置文件参数配置说明 本小节主要详细描述demo_yaml配置文件、配置参数说明,用户可根据实际自行选择其需要的参数。 表1 模型训练脚本参数 参数 示例值 参数说明 model_name_or_path /home/ma-user/ws/tokenizers/Qwen2-
Yaml配置文件参数配置说明 本小节主要详细描述demo_yaml配置文件、配置参数说明,用户可根据实际自行选择其需要的参数。 表1 模型训练脚本参数 参数 示例值 参数说明 model_name_or_path /home/ma-user/ws/tokenizers/Qwen2-
在推理生产环境中部署推理服务 本章节介绍如何在ModelArts的推理生产环境(ModelArts控制台的在线服务功能)中部署推理服务。 Step1 准备模型文件和权重文件 在OBS桶中,创建文件夹,准备模型权重文件、推理启动脚本run_vllm.sh及SSL证书。此处以chatglm3
Yaml配置文件参数配置说明 本小节主要详细描述demo_yaml配置文件、配置参数说明,用户可根据实际自行选择其需要的参数。 表1 模型训练脚本参数 参数 示例值 参数说明 model_name_or_path /home/ma-user/ws/tokenizers/Qwen2-