检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
排序策略-离线排序模型 排序策略简介 排序策略用于训练排序模型,该模型将被用于对召回策略召回的候选集进行排序,以将推荐物品顺序调整到最优。 Logistic Regression (LR) LR算法是一种广义的线性回归分析模型,常用于数据挖掘、疾病自动诊断、经济预测等领域。LR算法通过在线性回归的基础上叠加一个
排序策略 排序策略简介 排序策略用于训练排序模型,该模型将被用于对召回策略召回的候选集进行排序,以将推荐物品顺序调整到最优。排序模型可对LR、FM、FFM、DeepFM和PIN等模型进行训练,具体包括如下内容: 逻辑斯蒂回归-LR 因子分解机-FM 域感知因子分解机-FFM 深度网络因子分解机
提交排序任务API 功能介绍 用于提交排序训练作业。 URI POST /v1/{project_id}/rank-job 参数说明请参见表1。 表1 URI参数说明 名称 是否必选 类型 说明 project_id 是 String 项目编号,用于资源隔离。获取方法请参见获取项目
修改训练作业参数 功能介绍 修改指定作业的元数据信息。 调试 您可以在API Explorer中调试该接口。 URI PUT /v2.0/{project_id}/workspaces/{workspace_id}/resources/{resource_id}/job-instance
新建在线服务 功能介绍 新建在线服务元数据,新建成功之后可手动发布此服务。 调试 您可以在API Explorer中调试该接口。 URI POST /v2.0/{project_id}/workspaces/{workspace_id}/resources/{resource_id
策略参数说明 RES支持多种策略,本章介绍召回策略(recall)、排序策略(sorting)。具体描述请参见表1 策略类型说明。 表1 策略类型说明 strategy_type name algorithm_type recall 特定行为热度推荐 SpecificBehavior
新建多个训练作业 功能介绍 批量新建作业。 调试 您可以在API Explorer中调试该接口。 URI POST /v2.0/{project_id}/workspaces/{workspace_id}/resources/{resource_id}/job-instances
新建训练作业 功能介绍 新建训练作业元数据,新建成功之后可手动执行此任务。 调试 您可以在API Explorer中调试该接口。 URI POST /v2.0/{project_id}/workspaces/{workspace_id}/resources/{resource_id
创建智能场景 功能介绍 在指定工作空间下面创建智能场景。 调试 您可以在API Explorer中调试该接口。 URI POST /v2.0/{project_id}/workspaces/{workspace_id}/intelligent-scenes 表1 路径参数 参数 是否必选
查询在线服务详情 功能介绍 根据给定的workspace_id和resource_id及category查询在线服务。 调试 您可以在API Explorer中调试该接口。 URI GET /v2.0/{project_id}/workspaces/{workspace_id}/resources
修改在线服务参数 功能介绍 修改指定在线服务的元数据内容。 调试 您可以在API Explorer中调试该接口。 URI PUT /v2.0/{project_id}/workspaces/{workspace_id}/resources/{resource_id}/service-instance
更新智能场景内容 功能介绍 更新智能场景的内容信息。 调试 您可以在API Explorer中调试该接口。 URI PUT /v2.0/{project_id}/workspaces/{workspace_id}/intelligent-scenes/{scene_id} 表1 路径参数
查询训练作业 功能介绍 查询resource_id(数据源id或场景id)下的指定类型的作业。 调试 您可以在API Explorer中调试该接口。 URI GET /v2.0/{project_id}/workspaces/{workspace_id}/resources/{resource_id
查询数据源详情 功能介绍 查询指定数据源的详情信息。 调试 您可以在API Explorer中调试该接口。 URI GET /v2.0/{project_id}/workspaces/{workspace_id}/data-sources/{datasource_id} 表1 路径参数
通过DLF进行作业监控及任务异常重新启动 推荐系统提供了查询作业详情API接口,可返回作业详情。返回体中的作业状态字段“jobs.job_status”表示了当前任务的状态。 重新执行作业的API用来将任务以相同的配置重新执行一次。 通过查询作业详情API和重新执行作业的API可完成对任务状态的监控
近线作业 近线作业简介 近线作业为推荐系统提供实时计算能力。近线作业以数据接入服务DIS中的数据为数据源,实时计算并更新用户画像、物品画像和推荐候选集等数据。使用近线作业,用户需先将业务系统埋点日志转换成实时日志指定格式,并实时写入DIS相应通道。近线作业具体实现请参见图1。 图1
部署服务 功能介绍 该接口用于部署推理服务。 URI POST /v1/{project_id}/infer-services 参数说明请参见表1。 表1 URI参数说明 名称 是否必选 类型 说明 project_id 是 String 项目编号,用于资源隔离。获取方法请参见获取项目
召回策略 召回是指对大量的物品做初选,为每一个用户形成个性化侯选集。召回策略中内置了多种召回方式,用户可根据自己场景选择。召回策略对应流程请参见图1。 图1 召回策略 推荐系统支持的召回方式有: 基于特定行为热度推荐 基于综合行为热度推荐 基于物品的协同过滤推荐 基于用户的协同过滤推荐
创建自定义场景 自定义场景基于用户群体不同推荐场景的需求,提供了多种多样的推荐策略和算法,实现了端到端的自定义推荐场景搭建,使每一个推荐场景都能得到针对性的推荐效果提升。 前提条件 已经存在创建成功并完成数据探索的数据源。 由于训练作业运行需消耗资源,确保账户未欠费。 确保您使用的
召回策略 召回是指对大量的物品做初选,为每一个用户形成个性化侯选集。召回策略是指通过大数据计算或深度训练生成推荐候选集的算法策略。召回策略中内置了多种召回方式,您可根据自己场景选择。 基于综合行为热度推荐 基于综合行为热度推荐统计用户对物品所有行为的加权热度。如果选择用户分群,将生成每个分组的热度推荐