检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Lite Cluster使用流程 ModelArts Lite Cluster面向k8s资源型用户,提供托管式k8s集群,并预装主流AI开发插件以及自研的加速插件,以云原生方式直接向用户提供AI Native的资源、任务等能力,用户可以直接操作资源池中的节点和k8s集群。本文旨在帮助您了解
示例:从 0 到 1 制作自定义镜像并用于训练(Pytorch+CPU/GPU) 本章节介绍如何从0到1制作镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎是PyTorch,训练使用的资源是CPU或GPU。 本实践教程仅适用于新版训练作业。 场景描述 本示例使用
非分离部署推理服务 本章节介绍如何使用vLLM 0.5.0框架部署并启动推理服务。 什么是非分离部署 全量推理和增量推理在同一节点上进行。 前提条件 已准备好DevServer环境,具体参考资源规格要求。推荐使用“西南-贵阳一”Region上的DevServer和昇腾Snt9b资源
在推理生产环境中部署推理服务 本章节介绍如何在ModelArts的推理生产环境(ModelArts控制台的在线服务功能)中部署推理服务。 Step1 准备模型文件和权重文件 在OBS桶中,创建文件夹,准备模型权重文件、推理启动脚本run_vllm.sh及SSL证书。此处以chatglm3
ModelArts Standard推理服务支持VPC直连的高速访问通道配置 背景说明 访问在线服务的实际业务中,用户可能会存在如下需求: 高吞吐量、低时延 TCP或者RPC请求 因此,ModelArts提供了VPC直连的高速访问通道功能以满足用户的需求。 使用VPC直连的高速访问通道
从0制作自定义镜像用于创建训练作业(PyTorch+CPU/GPU) 本章节介绍如何从0到1制作镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎是PyTorch,训练使用的资源是CPU或GPU。 本实践教程仅适用于新版训练作业。 场景描述 本示例使用Linux
Hunyuan-DiT基于DevServer部署适配PyTorch NPU推理指导(6.3.909) 混元DiT,一个基于Diffusion transformer的文本到图像生成模型,此模型具有中英文细粒度理解能力。 方案概览 本方案介绍了在ModelArts Lite DevServer
SD3基于DevServer适配PyTorch NPU的训练指导(6.3.912) Stable Diffusion(简称SD)是一种基于扩散过程的图像生成模型,应用于文生图场景,能够帮助用户生成图像。 方案概览 本方案介绍了在ModelArts DevServer上使用昇腾计算资源
预训练任务 Step1 上传训练权重文件和数据集 如果在准备代码和数据阶段已经上传权重文件和数据集到容器中,可以忽略此步骤。 如果未上传训练权重文件和数据集到容器中,具体参考上传代码和权重文件到工作环境和上传数据到指定目录章节完成。训练脚本中会自动执行训练前的权重转换操作和数据处理操作
LoRA微调训练 Step1 上传训练权重文件和数据集 如果在准备代码和数据阶段已经上传权重文件和数据集到容器中,可以忽略此步骤。 如果未上传训练权重文件和数据集到容器中,具体参考上传代码和权重文件到工作环境和上传数据到指定目录章节完成。训练脚本中会自动执行训练前的权重转换操作和数据处理操作
通过AK/SK认证的方式访问在线服务 如果在线服务的状态处于“运行中”,则表示在线服务已部署成功。部署成功的在线服务,将为用户提供一个可调用的API,此API为标准Restful API。用户可以通过AK/SK签名认证方式调用API。 使用AK/SK认证时,您可以通过APIG SDK
示例:创建DDP分布式训练(PyTorch+GPU) 本文介绍三种使用训练作业来启动PyTorch DDP训练的方法及对应代码示例。 使用PyTorch预置框架功能,通过mp.spawn命令启动 使用自定义镜像功能 通过torch.distributed.launch命令启动 通过
ascendfactory-cli方式启动(推荐) 相对于之前demo.sh方式启动(历史版本)的启动方式,本章节新增了通过benchmark工具启动训练的方式。此方式训练完成后json日志或打屏日志直接打印性能结果,免于计算,方便用户验证发布模型的质量。并且新的训练方式将统一管理训练日志
将模型部署为批量推理服务 模型准备完成后,您可以将模型部署为批量服务。在“模型部署>批量服务”界面,列举了用户所创建的批量服务。 前提条件 数据已完成准备:已在ModelArts中创建状态“正常”可用的模型。 准备好需要批量处理的数据,并上传至OBS目录。 已在OBS创建至少1个空的文件夹
部署推理服务 本章节介绍如何使用vLLM 0.4.2框架部署并启动推理服务。 前提条件 已准备好DevServer环境,具体参考资源规格要求。推荐使用“西南-贵阳一”Region上的DevServer和昇腾Snt9b资源。 安装过程需要连接互联网git clone,确保容器可以访问公网
PD分离部署使用说明 什么是PD分离部署 大模型推理是自回归的过程,有以下两阶段: Prefill阶段(全量推理) 将用户请求的prompt传入大模型,进行计算,中间结果写入KVCache并推出第1个token,属于计算密集型。 Decode阶段(增量推理) 将请求的前1个token
包年/包月 包年/包月是一种先付费再使用的计费模式,适用于对资源需求稳定且希望降低成本的用户。通过选择包年/包月的计费模式,您可以预先购买云服务资源并获得一定程度的价格优惠。本文将介绍ModelArts资源包年/包月的计费规则。 适用场景 包年/包月计费模式需要用户预先支付一定时长的费用
msprobe精度分析工具使用指导 msprobe是MindStudio Training Tools工具链下精度调试部分的工具包,其通过采集和对比标杆(GPU/CPU)环境和昇腾环境上运行训练时的差异点来判断问题所在,主要包括精度预检、精度比对和梯度监控等功能。更多内容请参考msprobe
在推理生产环境中部署推理服务 本章节介绍如何在ModelArts的推理生产环境(ModelArts控制台的在线服务功能)中部署推理服务。 Step1 准备模型文件和权重文件 在OBS桶中,创建文件夹,准备模型权重文件、推理启动脚本run_vllm.sh及SSL证书。此处以chatglm3
SFT全参微调训练任务 Step1 上传训练权重文件和数据集 如果在准备代码和数据阶段已经上传权重文件和数据集到容器中,可以忽略此步骤。 如果未上传训练权重文件和数据集到容器中,具体参考上传代码和权重文件到工作环境和上传数据到指定目录章节完成。训练脚本中会自动执行训练前的权重转换操作和数据处理操作