检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
止”状态的服务进行启动操作,“部署中”状态的服务无法启动。启动服务,当服务处于“运行中”状态后,ModelArts将开始计费。您可以通过如下方式启动服务: 登录ModelArts管理控制台,在左侧菜单栏中选择“模型部署”,进入目标服务类型管理页面。您可以单击“操作”列的“启动”,启动服务。
KeyError: 'bndbox' 原因分析 用于训练的数据集中,使用了“非矩形框”标注。而预置使用算法不支持“非矩形框”标注的数据集。 处理方法 此问题有两种解决方法: 方法1:使用常用框架自行编码开发模型,支持“多边形”标注的数据集。 方法2:修改数据集,使用矩形标注。然后再启动训练作业。
部署在线服务时,自定义预测脚本python依赖包出现冲突,导致运行出错 导入模型时,需同时将对应的推理代码及配置文件放置在模型文件夹下。使用Python编码过程中,推荐采用相对导入方式(Python import)导入自定义包。 如果ModelArts推理框架代码内部存在同名包,
原因分析 出现该问题的可能原因如下: 切分数据时,选择的数据不对。 处理方法 尝试如下代码: X = dataset.iloc[:,:-1].values 建议与总结 在创建训练作业前,推荐您先使用ModelArts开发环境调试训练代码,避免代码迁移过程中的错误。 直接使用线上n
在使用keras时,升级版本>=2.3.0之后,之前跑通的代码出现如下报错: TypeError: Unexpected keyword argument passed to optimizer: learning_rate 原因分析 出现该问题的可能原因是“learning_rate”的参数名称写错了。kera
800训练服务器的网卡配置问题 机头网卡配置是什么? 有以下两类网卡: 四个2*100GE网卡,为RoCE网卡,插在NPU板。 一个4*25GE/10GE,为Hi1822网卡,插在主板上的。 ifconfig能看到的网卡信息吗 能看到主板上的网卡信息,即VPC分配的私有IP。若要看
3镜像中,去升级了pytroch1.4的版本,导致之前在pytroch1.3跑通的代码报错如下: “RuntimeError:max_pool2d_with_indices_out_cuda_frame failed with error code 0” 原因分析 出现该问题的可能原因如下: pytorch1
准备镜像 准备训练Llama2-13B模型适用的容器镜像,包括获取镜像地址,了解镜像中包含的各类固件版本,配置Standard物理机环境操作。 镜像地址 本教程中用到的训练的基础镜像地址和配套版本关系如下表所示,请提前了解。 表1 基础容器镜像地址 镜像用途 镜像地址 配套版本 训练基础镜像
by signal: Killed BP。 原因分析 由于batch size过大,导致Dataloader进程退出。 处理方法 请调小batch size的数值。 父主题: 业务代码问题
SFT全参微调。 本章节主要介绍如何将HuggingFace权重转换为Megatron格式。此处的HuggingFace权重文件和转换操作结果同时适用于SFT全参微调和LoRA微调训练 HuggingFace权重转换操作 下载Llama2-70B的预训练权重和词表文件,并上传到/
运行完成后,会在output_dir下生成量化后的权重。量化后的权重包括原始权重和kvcache的scale系数。 Step2 抽取kv-cache量化系数 该步骤的目的是将Step1使用tensorRT量化工具进行模型量化中生成的scale系数提取到单独文件中,供推理时使用。 使用的抽取脚本由vllm社区提供:
支持SmoothQuant(W8A8)量化的模型列表请参见表3。 本章节介绍如何使用SmoothQuant量化工具实现推理量化。 SmoothQuant量化工具使用到的脚本存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools目录下。 代码目录如下: AutoSmoothQuant
FT全参微调。本章节主要介绍如何将HuggingFace权重转换为Megatron格式。此处的HuggingFace权重文件和转换操作结果同时适用于SFT全参微调和LoRA微调训练。 HuggingFace权重转换操作 下载baichuan2-13b的预训练权重和词表文件,并上传
支持SmoothQuant(W8A8)量化的模型列表请参见表3。 本章节介绍如何使用SmoothQuant量化工具实现推理量化。 SmoothQuant量化工具使用到的脚本存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools目录下。 代码目录如下: AutoSmoothQuant
止”状态的服务进行启动操作,“部署中”状态的服务无法启动。启动服务,当服务处于“运行中”状态后,ModelArts将开始计费。您可以通过如下方式启动服务: 登录ModelArts管理控制台,在左侧菜单栏中选择“模型部署”,进入目标服务类型管理页面。您可以单击“操作”列的“启动”,启动服务。
appear if you passed in a non-contiguous input. 原因分析 出现该问题的可能原因如下: 数据输入不连续,cuDNN不支持的类型。 处理方法 禁用cuDNN,在训练前加入如下代码。 torch.backends.cudnn.enabled = False
非必填。流水线并行中一个micro batch所处理的样本量。在流水线并行中,为了减少气泡时间,会将一个step的数据切分成多个micro batch 默认值1。建议值单机1,双机2。 GBS 16 非必填。默认值 16 训练中所有机器一个step所处理的样本量。影响每一次训练迭代的时长,建议值单机16,双机32。
用于指定预处理数据的工作线程数。随着线程数的增加,预处理的速度也会提高,但也会增加内存的使用。 per_device_train_batch_size 1 必须修改,指定每个设备的训练批次大小。 gradient_accumulation_steps 8 指定梯度累积的步数,这可以增加批次大小而不增加内存消耗。
amples 图3 输入有效的GitHub开源仓库地址 Clone仓库的过程中会将进度展示出来。 图4 Clone仓库的过程 Clone仓库成功。 图5 Clone仓库成功 异常处理 Clone仓库失败。可能是网络原因问题。可以在JupyterLab的Terminal中通过执行git
在ECS中Docker登录 在SWR中单击右上角的“登录指令”,然后在跳出的登录指定窗口,单击复制临时登录指令。在创建的ECS中粘贴临时登录指令,即可完成登录。 图3 复制登录指令 Step5 获取训练镜像 请确保在正确的Region下获取镜像。建议使用官方提供的镜像部署训练服务。镜像地址{image_url}请参见表1。