检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
benchmark_parallel.csv 参数说明: --backend:服务类型,支持tgi、vllm、mindspore、openai等。本文档使用的推理接口是vllm。 --host:服务IP地址,如127.0.0.1。 --port:服务端口,和推理服务端口8080。 --url:如果以vllm
e Server环境中,使用NPU卡对CogVideoX模型进行全量微调。本文档中提供的脚本,是基于原生CogVideoX的代码基础适配修改,可以用于NPU芯片训练。 CogVideo是一个94亿参数的Transformer模型,用于文本到视频生成。通过继承一个预训练的文本到图像
benchmark_parallel.csv 参数说明: --backend:服务类型,支持tgi、vllm、mindspore、openai等。本文档使用的推理接口是vllm。 --host:服务IP地址,如127.0.0.1。 --port:服务端口,和推理服务端口8080。 --url:如果以vllm
资源规格推荐使用“西南-贵阳一”Region上的Server和昇腾Snt9B资源。 推理部署使用的服务框架是vLLM。vLLM支持v0.3.2。 支持FP16和BF16数据类型推理。 资源规格要求 本文档中的模型运行环境是ModelArts Lite的Server。推荐使用“西南-贵阳一”Region上的资源和Ascend
Diffusers框架基于Lite Server适配PyTorch NPU推理指导(6.3.907) Stable Diffusion(简称SD)是一种基于扩散过程的图像生成模型,应用于文生图场景,能够帮助用户生成图像。 方案概览 本方案介绍了在ModelArts Lite Server上使用昇腾计算资源Ascend
co/THUDM/glm-4-9b-chat 操作流程 图1 操作流程图 表2 操作任务流程说明 阶段 任务 说明 准备工作 准备资源 本教程案例是基于ModelArts Standard运行的,需要购买并开通ModelArts专属资源池和OBS桶。 准备数据 准备训练数据,可以用本案使
8x7B-Instruct-v0.1 操作流程 图1 操作流程图 表2 操作任务流程说明 阶段 任务 说明 准备工作 准备资源 本教程案例是基于ModelArts Standard运行的,需要购买并开通ModelArts专属资源池和OBS桶。 准备数据 准备训练数据,可以用本案使
Diffusers框架基于Lite Server适配PyTorch NPU推理指导(6.3.912) Stable Diffusion(简称SD)是一种基于扩散过程的图像生成模型,应用于文生图场景,能够帮助用户生成图像。 方案概览 本方案介绍了在ModelArts Lite Server上使用昇腾计算资源Ascend
ndSpeed; sh ./scripts/install.sh; sh ./scripts/obs_pipeline.sh 若镜像使用ECS中构建新镜像(二选一)构建的新镜像时,训练作业启动命令中输入: cd /home/ma-user/modelarts/user-job-dir/AscendSpeed;
参数类型 描述 dataset_id 是 String 数据集ID。 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 sample_id 是 String 样本ID。 workforce_task_id 是 String 标注任务ID。 表2
-annotations/samples 表1 路径参数 参数 是否必选 参数类型 描述 dataset_id 是 String 数据集ID。 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 表2 Query参数 参数 是否必选 参数类型
ndSpeed; sh ./scripts/install.sh; sh ./scripts/obs_pipeline.sh 若镜像使用ECS中构建新镜像(二选一)构建的新镜像时,训练作业启动命令中输入: cd /home/ma-user/modelarts/user-job-dir/AscendSpeed;
wf.AlgorithmParameters(name="save_model_secs", value=wf.Placeholder(name="save_model_secs", placeholder_type=wf.PlaceholderType.INT, default=60
ndSpeed; sh ./scripts/install.sh; sh ./scripts/obs_pipeline.sh 若镜像使用ECS中构建新镜像(二选一)构建的新镜像时,训练作业启动命令中输入: cd /home/ma-user/modelarts/user-job-dir/AscendSpeed;
and cuda10.2 CPU/GPU 是 是 tensorflow2.1-cuda10.1-cudnn7-ubuntu18.04 CPU、GPU通用算法开发和训练基础镜像,预置AI引擎TensorFlow2.1 CPU/GPU 是 是 tensorflow1.13-cuda10
能。 URI GET /v2/{project_id}/pools 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 表2 Query参数 参数 是否必选 参数类型 描述 workspaceId
co/THUDM/glm-4-9b-chat 操作流程 图1 操作流程图 表2 操作任务流程说明 阶段 任务 说明 准备工作 准备资源 本教程案例是基于ModelArts Standard运行的,需要购买并开通ModelArts专属资源池和OBS桶。 准备数据 准备训练数据,可以用本案使
a-3.1-70B-Instruct 操作流程 图1 操作流程图 表2 操作任务流程说明 阶段 任务 说明 准备工作 准备资源 本教程案例是基于ModelArts Standard运行的,需要购买并开通ModelArts专属资源池和OBS桶。 准备数据 准备训练数据,可以用本案使
Server环境中,使用NPU卡对CogVideoX模型基于sat框架进行全量微调。本文档中提供的脚本,是基于原生CogVideoX的代码基础适配修改,可以用于NPU芯片训练。 CogVideo是一个94亿参数的Transformer模型,用于文本到视频生成。通过继承一个预训练的文本到图像
a-3.1-70B-Instruct 操作流程 图1 操作流程图 表2 操作任务流程说明 阶段 任务 说明 准备工作 准备资源 本教程案例是基于ModelArts Standard运行的,需要购买并开通ModelArts专属资源池和OBS桶。 准备数据 准备训练数据,可以用本案使