检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
ux上安装配置Grafana和在Notebook上安装配置Grafana三种方式,请您根据实际情况选择。 配置Grafana数据源 配置仪表盘查看指标数据 父主题: ModelArts Standard资源监控
准备AscendSpeed训练代码、分词器Tokenizer和推理代码。 准备数据 准备训练数据,可以用本案使用的数据集,也可以使用自己准备的数据集。 准备镜像 准备训练模型适用的容器镜像。 预训练 预训练 介绍如何进行预训练,包括训练数据处理、超参配置、训练任务、性能查看。 微调训练 SFT全参微调
使用WebSocket协议的方式访问在线服务:WebSocket使得客户端和服务器之间的数据交换变得更加简单,允许服务端主动向客户端推送数据。在WebSocket API中,浏览器和服务器只需要完成一次握手,两者之间就可以建立持久性的连接,并进行双向数据传输。 使用Server-Sent Events协议的方式访问在线服务:Server-Sent
问题现象 或 原因分析 可能为/home/ma-user/work磁盘空间不足。 解决方法 删除/home/ma-user/work路径下无用文件。 父主题: VS Code连接开发环境失败故障处理
智能边缘平台(Intelligent EdgeFabric)通过纳管您的边缘节点,提供将云上应用延伸到边缘的能力,联动边缘和云端的数据,满足客户对边缘计算资源的远程管控、数据处理、分析决策、智能化的诉求。 ModelArts支持将模型通过智能边缘平台IEF,在边缘节点将模型部署为一个Web服务。您可以通过API接口访问边缘服务。
执行如下命令,排查回收站占用内存(回收站文件默认在/home/ma-user/work/.Trash-1000/files下)。 cd /home/ma-user/work/.Trash-1000/ du -ah 根据实际删除回收站不需要的大文件。(注:请谨慎操作,文件删除后不可恢复) rm {文件路径} 如
在ModelArts上如何获得RANK_TABLE_FILE用于分布式训练? ModelArts会帮用户生成RANK_TABLE_FILE文件,可通过环境变量查看文件位置。 在Notebook中打开terminal,可以运行如下命令查看RANK_TABLE_FILE: 1 env | grep
权重转换完成后,需要将转换后的文件与原始Hugging Face模型中的文件进行对比,查看是否缺少如tokenizers.json、tokenizer_config.json、special_tokens_map.json等tokenizer文件或者其他json文件。如果缺少则需要直接复
权重转换完成后,需要将转换后的文件与原始Hugging Face模型中的文件进行对比,查看是否缺少如tokenizers.json、tokenizer_config.json、special_tokens_map.json等tokenizer文件或者其他json文件。如果缺少则需要直接复
权重转换完成后,需要将转换后的文件与原始Hugging Face模型中的文件进行对比,查看是否缺少如tokenizers.json、tokenizer_config.json、special_tokens_map.json等tokenizer文件或者其他json文件。若缺少则需要直接复制
权重转换完成后,需要将转换后的文件与原始Hugging Face模型中的文件进行对比,查看是否缺少如tokenizers.json、tokenizer_config.json、special_tokens_map.json等tokenizer文件或者其他json文件。如果缺少则需要直接复
获得更适合特定领域或任务的大语言模型。 在MaaS中创建模型 3 模型调优 完成数据集的准备后,可以在ModelArts Studio大模型即服务平台开始模型调优。模型调优,即使用训练数据集和验证数据集训练模型。 使用MaaS调优模型 模型压缩 在ModelArts Studio
准备AscendSpeed训练代码、分词器Tokenizer和推理代码。 准备数据 准备训练数据,可以用本案使用的数据集,也可以使用自己准备的数据集。 准备镜像 准备训练模型适用的容器镜像。 预训练 预训练 介绍如何进行预训练,包括训练数据处理、超参配置、训练任务、性能查看。 微调训练 SFT全参微调
运行结果将存储在output文件夹中,如果用户指定了output_path,会指定位置保存,如果不指定则在当前代码执行目录生成文件夹保存输出。整体运行的结果都存放在output文件夹中,每转一次模型就会根据模型名称以及相关参数生成结果文件,如下图所示。 图3 output文件 在每次运行的结
DockerFile构建镜像(可选) 本章节主要介绍通过DockerFile文件构建训练镜像,将训练过程中依赖包封装使用,过程中需要连接互联网git clone,请确保环境可以访问公网,详解操作如下: 进入代码包Dockerfile文件同级目录: cd /home/ma-user/ws/llm_train/LLaMAFactory
注意:权重转换完成后,需要将转换后的文件与原始Hugging Face模型中的文件进行对比,查看是否缺少如tokenizers.json、tokenizer_config.json、special_tokens_map.json等tokenizer文件或者其他json文件。如果缺少则需要直接复
准备AscendSpeed训练代码、分词器Tokenizer和推理代码。 准备数据 准备训练数据,可以用本案使用的数据集,也可以使用自己准备的数据集。 准备镜像 准备训练模型适用的容器镜像。 预训练 预训练 介绍如何进行预训练,包括训练数据处理、超参配置、训练任务、性能查看。 微调训练 SFT全参微调
自动学习作业而创建的服务。操作完成后,ModelArts服务即停止计费。 登录OBS控制台,进入自己创建的OBS桶中,删除存储在OBS中的数据。操作完成后,OBS服务即停止计费。 对于使用专属资源池创建的自动学习作业: 登录ModelArts控制台,在自动学习作业列表中,删除正在
String 输入数据的名称,支持1到64位只包含英文、数字、下划线(_)和中划线(-)的字符。 type String 输入项类型。枚举值如下: dataset:数据集 obs:OBS data_selector:数据选择 data Object 输入项数据。 value Object
储的是临时文件,不占用容器空间。 如果没有文件可以删除,或者不清楚哪些可以删除,那么可以使用相同的镜像重新创建一个Notebook,使用新建的Notebook时,注意减少软件包的安装或文件的下载等操作,也可以减少容器大小; 减少镜像文件的大小 如果无法确认哪些包或文件可以不安装,