检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
空间成员完成计算节点部署,配置参数时选择挂载方式和数据目录,参考部署计算节点。 空间成员在计算节点中完成数据发布,参考发布数据。 约束限制 避免作业名重复。 支持本地连接器配置的数据交换类型文件。 只可以申请使用非己方的数据。 创建数据交换作业 用户登录进入计算节点页面。 在左侧导航树上依次选择“可信数据交换 > 数据目录”,打开“数据目录”页面。
在左侧导航树上选择“可信数据交换 > 数据合约”,打开数据合约页面。 在数据合约页面单击“我收到的”。 图1 我收到的数据合约 单击“查看详情”,查看合约内容。 图2 查看合约内容 单击“同意并执行”,签署合约,合约开始履行。或者拒绝合约。 在左侧导航树上选择“可信数据交换 > 数据交换”,在
用数方提交申请后未撤回的申请,一旦供数方确认申请,申请内容无法修改。 创建数据交换作业 用户登录进入计算节点页面。 在左侧导航树上选择“可信数据交换 > 数据申请”,打开数据申请页面。 在数据申请页面单击“我收到的”,查看供数方节点收到的申请列表。 图1 我收到的数据申请 在申请列表中选择申请状态为“待处理”,
场景描述 数据商业空间中公司B针对公司A的某些数据资产存在业务需求,由于安全性和数据主权的考虑,公司A与公司B基于TICS完成数据资产的交换。基于TICS进行数据资产交换,保证公司A的数据主权、公司B的数据可获得,同时保证交换过程安全可信。 以下是数据拥有方公司A和数据需求方公司B基于TICS平台的操作。
公司A编辑合约完成后,可以提交由公司B审批。在“可信数据交换 > 数据合约 > 我创建的”的页签可以看到合约及状态,并允许撤回再次编辑。 审批合约。 数据拥有方公司B在左侧导航树上选择“可信数据交换 > 数据合约”,打开数据合约页面。 在数据合约页面单击“我收到的”。可以看到数据需求方公司A发送来的数据合约。 图3 我收到的数据合约
到期、作业执行、文件解密等关键事件。 前提条件 已创建合约,参考创建合约。 创建数据交换作业 用户登录进入计算节点页面。 在左侧导航树上选择“可信数据交换 > 数据合约”,打开数据合约页面。 在数据合约页面单击“我创建的”,单击“更多 > 履约记录”。 图1 履约记录 在弹出的对话框展示履约记录的内容。
解和组合过程,采用有向无环图DAG实现多个参与方数据流的自动化编排和融合计算。 自主高效 数据使用全流程可视化展示,为数据参与方提供可感知、可监测的数据使用过程; 支持数据参与方、计算方的多种部署模式,包括云上(同Region、跨Region)、边缘节点、HCSO的部署模式; 采
点在同一VPC下,且端口开放。填写的用户名,需具有数据库的读写权限(参考修改权限)。“密码”为该用户登录RDS实例的密码。 “连接器类型”选择MySql时,需保证计算节点与数据库所在虚机的连通性,“驱动文件”需与目标MySQL数据库版本一致。驱动类名com.mysql.cj.jdbc
场景描述 某企业A在进行新客户营销时的成本过高,想要通过引入外部数据的方式提高营销的效果,降低营销成本。 因此企业A希望与某大数据厂商B展开一项合作,基于双方共有的数据进行联邦建模,使用训练出的联邦模型对新数据进行联邦预测,筛选出高价值的潜在客户,再针对这些客户进行定向营销,达成提高营销效果、降低营销成本的业务诉求。
发起联邦预测 企业A单击“发起预测”按钮,选择己方和大数据厂商B的预测数据集,单击确定即可发起预测。 TICS服务会对两方的数据先进行样本对齐,并对双方共有的数据进行联邦预测,预测的结果会保存在企业A(作业发起方)的计算节点上。企业A可以通过obs服务或者登录到计算节点后台获取到对应路径的文件。
隐私求交是可信智能计算服务提供的安全获取参与双方所持数据交集的功能。它允许参与计算的双方,在不获取对方任何额外信息(除交集外的其它信息)的基础上,得到双方持有数据的交集。 单独使用场景 数据持有双方为获取己方与对方数据的交集,在不暴露其它数据的情况下,将需要获取交集的那一部分数据与对方的数据,通过创建并执行可信
String 字段类型 privacy_policy_type String 字段数据隐私处理方式:NONE.不处理,HASH.哈希,MASK.掩码 privacy_policy String 字段数据处理类型:NONE.不处理(默认),ANONYMIZE.脱敏 sql_col_privacy_type
表打开任务详情,可以查看更详细的计算过程信息。 图7 作业计算过程信息详情(截图为多方安全计算作业示例,请以实际作业为准) 父主题: 可信数据交换
多方安全计算”页面单击创建,进入sql开发页面,展开左侧的“合作方数据”可以看到企业A、大数据厂商B发布的不同数据集。 单击某一个数据集可以看到数据集的表结构信息。 此时企业A可以编写如下的sql语句统计双方的数据碰撞后的正负样本总数,正负样本总数相加即为双方共有数据的总数。 select sum(
什么是区域和可用区? 什么是区域、可用区? 用区域和可用区来描述数据中心的位置,您可以在特定的区域、可用区创建资源。 区域(Region)指物理的数据中心。每个区域完全独立,这样可以实现较大程度的容错能力和稳定性。资源创建成功后不能更换区域。 可用区(AZ,Availability
邀请云租户作为数据提供方,动态构建可信计算空间,实现空间内严格可控的数据使用和监管。 数据融合分析 支持对接多个数据参与方的主流数据存储系统,为数据消费者实现多方数据的SQL Join等融合分析,各方的敏感数据在具有安全支撑的聚合计算节点中实现安全统计。 计算节点 数据参与方使用数
果。 数据隐私保护强 多方采用隐私集合求交PSI对齐样本数据,本地数据或模型加密后在安全环境中运算,实现数据可用不可得。精细化的数据隐私保护策略,确保分析结果中强制执行隐私数据的脱敏。 图1 政企信用联合风控 政府数据融合共治 由于数据安全以及隐私保护问题,政府各委办局数据尚未充
Computing Service )打破数据孤岛,在数据隐私保护的前提下,实现行业内部、各行业间的多方数据联合分析和联邦计算。TICS基于安全多方计算MPC、区块链等技术,实现了数据在存储、流通、计算过程中端到端的安全和可审计,推动了跨行业的可信数据融合和协同。 使用TICS的用户角色
Service)。可信智能计算服务TICS打破数据孤岛,在数据隐私保护的前提下,实现行业内部、各行业间的多方数据联合分析和联邦计算。TICS基于安全多方计算MPC、区块链等技术,实现了数据在存储、流通、计算过程中端到端的安全和可审计,推动了跨行业的可信数据融合和协同。 在调用可信智能计算服务TICS
Computing Service )打破数据孤岛,在数据隐私保护的前提下,实现行业内部、各行业间的多方数据联合分析和联邦计算。TICS基于安全多方计算MPC、区块链等技术,实现了数据在存储、流通、计算过程中端到端的安全和可审计,推动了跨行业的可信数据融合和协同。 使用TICS的用户角色