检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
牌检测算法,无需用户标注数据,大大降低标注成本和提高车牌检测场景上线效率。 已发布北京四区域 无监督车牌检测工作流 OBS 2.0支持HiLens套件 端云协同AI应用开发平台,提供简单易用的开发框架、开箱即用的开发环境、丰富的AI技能市场和云上管理平台,帮助用户高效开发多模态AI技能,并将其快速部署到端侧计算设备。
配额说明 本服务在使用数据集、在线服务、训练任务资源时涉及配额限制。 其配额查看及修改请参见关于配额。
评估模型 训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。一次性很难获得一个满意的模型,需要反复的调整算法、数据,不断评估训练生成的模型。 一些常用的指标,如精准率、召回率、F1值等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在视觉套件控制台选
部署服务。 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个标签的样本数不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。
部署服务。 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 如果分割效
在开发应用之前,您需要设计好商品标签,并自行准备数据集并上传至OBS桶及文件夹中。 由于数据安全原因,本样例不提供具体的样例数据,仅提供适用本次样例的数据要求。本次样例需要准备两份数据,一份训练数据集用于训练模型,一份SKU数据用于创建SKU,即商品各类单品的图片,方便后续针对训练数据集中的数据进行自动标注。 商品标签
详细指导 准备数据 在使用多语种文本分类工作流开发应用之前,您需要提前准备用于模型训练的数据,上传至OBS中。 准备数据 选择数据 在使用多语种工作流开发应用时,您需要新建或导入训练数据集,后续训练模型操作是基于您选择的训练数据集。 选择数据 训练模型 选择训练数据后,基于已标注
本样例填写“test”。 描述 数据集简要描述。 - 数据集状态 上传的训练数据可以是已标注的数据,也可以是未标注的数据。 您可以根据自身业务选择“数据集状态”是“已标注数据集”还是“未标注数据集”。 数据集模板可在选择“数据集状态”后,单击下方的“文本分类已标注数据模板”或“文本分类未标注数据模板”,下载数据集模板至本地查看。
新建可训练技能 本章节介绍使用可训练技能模板新建技能。使用可训练技能模板新建技能,可自主上传数据训练模型,并快速创建技能,一键部署至端侧设备。 前提条件 保证华为云帐号不欠费。在ModelArts Pro控制台开发应用时,会占用OBS资源,需要收取一定费用,收费规则请参见OBS价格详情。
评估模型 工作流会用测试数据评估模型,在“应用开发>评估模型”页面,查看评估结果。 模型评估 图1 模型评估 训练模型的版本、标签数量、测试集数量。单击“下载评估结果”,可保存评估结果至本地。 评估参数对比 图2 评估参数对比 左侧是各个标签数据的精确率、召回率、F1值。勾选
云状识别工作流 支持上传多种云状图数据,构建云状的识别模型,用于高精度识别云的外部形状,进而用于气象预测工作。 刹车盘识别工作流 支持上传多种刹车盘图片数据,构建刹车盘的识别模型,用于快速、准确的识别刹车盘类型。 无监督车盘检测工作流 支持上传车牌图片数据,构建无监督车牌检测模型,用于识别不同场景下的车牌。
在“应用开发”页面版本右侧,单击“更新版本”,即可新增新的应用版本。 图1 更新版本 在“应用开发”页面,您可以选择修改“数据选择”、“模型训练”、“模型评估”、“服务部署”步骤的配置信息,重新部署模板。操作指引如下: 选择数据 训练模型 评估模型 部署服务 父主题: HiLens套件
在使用热轧钢板表面缺陷检测工作流开发应用时,您需要新建或导入训练数据集,后续训练模型操作是基于您选择的训练数据集。 由于模型训练过程需要有标签的数据,如果您上传未标注数据,需要手动标注数据。 选择数据 训练模型 选择训练数据后,无需用户配置任何参数即可开始训练热轧钢板表面缺陷检测模型,并查看训练的模型准确率和误差的变化。
针对场景领域提供预训练模型,分类准确率高。 提供完善的文本处理能力,支持多种数据格式内容,适配不同场景的业务数据。 可根据使用过程中的反馈持续优化模型。 通用实体抽取工作流 功能介绍 支持自主上传文本数据,构建高精度实体抽取模型,适配不同行业场景的业务数据,快速获得定制服务。 适用场景 知识图谱、文本理解、智能问答、舆情分析等实体抽取场景。
评估模型 训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。一次性很难获得一个满意的模型,需要反复的调整算法参数、数据,不断评估训练生成的模型。 一些常用的指标,如精准率、召回率、F1值等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在自然语言处理
评估模型 训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。一次性很难获得一个满意的模型,需要反复的调整算法、数据,不断评估训练生成的模型。 一些常用的指标,如精准率、召回率、F1值等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在视觉套件控制台选
评估模型 训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。往往不能一次性获得一个满意的模型,需要反复的调整算法参数、数据,不断评估训练生成的模型。 一些常用的指标,如精准率、召回率、F1值等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在自然语言
评估模型 训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。一次性很难获得一个满意的模型,需要反复的调整算法、数据,不断评估训练生成的模型。 一些常用的指标,如精准率、召回率、F1值等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在视觉套件控制台选
评估模型 训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。一次性很难获得一个满意的模型,需要反复的调整算法参数、数据,不断评估训练生成的模型。 一些常用的指标,如精准率、召回率、F1值等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在自然语言处理