检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Notebook实例进行AI开发。 如果您有自己的算法,想改造适配后迁移到ModelArts Standard平台上进行训练和推理,您可以参考使用自定义算法构建模型(手写数字识别)。 更多入门实践,请参考《ModelArts入门实践》章节。如果您有其他疑问,您也可以通过华为云社区问答频道来与我们联系探讨。
tensorboard_pro官网。 创建好后的Tensorboard可视化展示面板如图5所示。 单击图5中数字1所示按钮,可以在单独的浏览器页签展示可视化面板。 图5数字2中提供了实例管理相关功能,包括重启Tensorboard实例(Reload),关闭Tensorboard实
workflow_id String Workflow工作流ID。 workflow_name String 工作流名称。填写1-64位,仅包含英文、数字、下划线(_)和中划线(-),并且以英文开头的名称。 scene_id String 自定义场景ID。 scene_name String
lora微调不支持断点续训 启动前需检查latest_checkpointed_iteration.txt文件中内容是否与所需iter_000xxxx数字(表示训练后保存权重对应迭代次数)保持一致,不一致则修改latest_checkpointed_iteration.txt内容与iter_000xxxx保持一致。
lora微调不支持断点续训 启动前需检查latest_checkpointed_iteration.txt文件中内容是否与所需iter_000xxxx数字(表示训练后保存权重对应迭代次数)保持一致,不一致则修改latest_checkpointed_iteration.txt内容与iter_000xxxx保持一致。
lora微调不支持断点续训 启动前需检查latest_checkpointed_iteration.txt文件中内容是否与所需iter_000xxxx数字(表示训练后保存权重对应迭代次数)保持一致,不一致则修改latest_checkpointed_iteration.txt内容与iter_000xxxx保持一致。
lora微调不支持断点续训 启动前需检查latest_checkpointed_iteration.txt文件中内容是否与所需iter_000xxxx数字(表示训练后保存权重对应迭代次数)保持一致,不一致则修改latest_checkpointed_iteration.txt内容与iter_000xxxx保持一致。
lora微调不支持断点续训 启动前需检查latest_checkpointed_iteration.txt文件中内容是否与所需iter_000xxxx数字(表示训练后保存权重对应迭代次数)保持一致,不一致则修改latest_checkpointed_iteration.txt内容与iter_000xxxx保持一致。
lora微调不支持断点续训 启动前需检查latest_checkpointed_iteration.txt文件中内容是否与所需iter_000xxxx数字(表示训练后保存权重对应迭代次数)保持一致,不一致则修改latest_checkpointed_iteration.txt内容与iter_000xxxx保持一致。
lora微调不支持断点续训 启动前需检查latest_checkpointed_iteration.txt文件中内容是否与所需iter_000xxxx数字(表示训练后保存权重对应迭代次数)保持一致,不一致则修改latest_checkpointed_iteration.txt内容与iter_000xxxx保持一致。
lora微调不支持断点续训 启动前需检查latest_checkpointed_iteration.txt文件中内容是否与所需iter_000xxxx数字(表示训练后保存权重对应迭代次数)保持一致,不一致则修改latest_checkpointed_iteration.txt内容与iter_000xxxx保持一致。
标记器(Tokenizer)是NLP管道的核心组件之一。它们有一个目的:将文本转换为模型可以处理的数据。模型只能处理数字,因此标记器(Tokenizer)需要将文本输入转换为数字数据。 baichuan2-13b-chat 这个路径下既有权重,也有Tokenizer,全部下载。具体内容参见权重和词表文件介绍。
您可以使用JobStep来构建作业类型节点,JobStep结构如下 表1 JobStep 属性 描述 是否必填 数据类型 name 作业节点的名称,命名规范(只能包含英文字母、数字、下划线(_)、中划线(-),并且只能以英文字母开头,长度限制为64字符),一个Workflow里的两个step名称不能重复 是 str algorithm
请参见ModelArts价格详情中的“规格价格”。 上述示例配置的费用计算如下: 包年/包月专属资源池费用 = 1,750 * 1 * 2 = 3,500 元 此处资源规格仅举例,请以实际控制台可选规格为准,且资源单价仅供参考,实际计算请以ModelArts价格详情中的价格为准。 变更配置后对计费的影响
label task") 参数说明 表1 请求参数 参数 是否必选 参数类型 描述 name 否 String 版本名称,必须是中文、字母、数字、下划线或中划线组成的合法字符串,长度为1-32位。 version_format 否 String 数据集版本格式。可选值如下: Default:默认格式
=contain表示查询名称中含有Workflow字样的所有工作流。 name 否 String 工作流名称。填写1-64位,仅包含英文、数字、下划线(_)和中划线(-),并且以英文开头的名称。 description 否 String 工作流描述信息。 请求参数 无 响应参数 状态码:200
标记器(Tokenizer)是NLP管道的核心组件之一。它们有一个目的:将文本转换为模型可以处理的数据。模型只能处理数字,因此标记器(Tokenizer)需要将文本输入转换为数字数据。 chatglm3-6b-hf 这个路径下既有权重,也有Tokenizer,全部下载。具体内容参见权重和词表文件介绍。
标记器(Tokenizer)是NLP管道的核心组件之一。它们有一个目的:将文本转换为模型可以处理的数据。模型只能处理数字,因此标记器(Tokenizer)需要将文本输入转换为数字数据。 llama-2-7b-hf llama-2-13b-chat-hf llama-2-70b-chat-hf
对象存储价格详情。 注意: 存储到OBS中的数据需在OBS控制台进行手动删除。如果未删除,则会按照OBS的计费规则进行持续计费。 按需计费 包年/包月 创建桶不收取费用,按实际使用的存储容量和时长收费 计费示例 以下案例中出现的费用价格仅供参考,实际价格请参见各服务价格详情。 示例:存储费用
包年/包月 按需计费:规格单价 * 购买时长 包年/包月:规格单价 * 购买时长 * 购买个数 计费示例 以下案例中出现的费用价格仅供参考,实际价格请参见各服务价格详情。 示例:使用公共资源池。计费项:计算资源费用 + EVS存储费用 假设用户于2023年4月1日10:00:00创建了