检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
DEBUG表示记录系统及系统的调试信息。 如果您需要修改日志级别,请执行如下操作: 登录FusionInsight Manager,选择“集群 > 服务 > 配置 > 全部配置”,进入HBase服务参数“全部配置”界面。 左边菜单栏中选择所需修改的角色所对应的日志菜单。 选择所需修改的日志级别。
开启Flink作业RocksDB监测步骤 使用具有FlinkServer管理员权限的用户登录FusionInsight Manager。 选择“集群 > 服务 > Flink”,在“Flink WebUI”右侧,单击链接,访问Flink的WebUI。 单击“作业管理”进入作业管理页面。
rue System级别: 使用用于访问HetuEngine WebUI界面的用户登录FusionInsight Manager。 选择“集群 > 服务 > HetuEngine”,进入HetuEngine服务页面。 在概览页签下的“基本信息”区域单击“HSConsole Web
通过IDEA自带的Maven工具,打包项目,生成jar包。具体操作请参考在Linux环境中编包并运行Spark程序。 将打包生成的jar包上传到Spark客户端所在服务器的任意目录(例如“$SPARK_HOME” )下。 若运行“Spark on HBase”样例程序,需要在Spark客户端的“spark-defaults
通过IDEA自带的Maven工具,打包项目,生成jar包。具体操作请参考在Linux环境中编包并运行Spark程序。 将打包生成的jar包上传到Spark客户端所在服务器的任意目录(例如“$SPARK_HOME” )下。 若运行“Spark on HBase”样例程序,需要在Spark客户端的“spark-defaults
状态码: 200 表2 响应Body参数 参数 参数类型 描述 cluster_versions Array of strings 参数解释: 集群版本列表。 请求示例 无 响应示例 状态码: 200 请求成功 { "cluster_versions" : [ "MRS 1.9.2"
-1, "lastUpdatedEpoch" : 1517383247086 } ] }] 结果分析: 通过这个命令,可以查询当前集群中所有的Spark应用(包括正在运行的应用和已经完成的应用),每个应用的信息如下表1。 表1 应用常用信息 参数 描述 id 应用的ID name
通过IDEA自带的Maven工具,打包项目,生成jar包。具体操作请参考在Linux环境中调测Spark应用。 将打包生成的jar包上传到Spark客户端所在服务器的任意目录(例如“$SPARK_HOME” )下。 若运行“Spark on HBase”样例程序,需要在Spark客户端的“spark-defaults
通过IDEA自带的Maven工具,打包项目,生成jar包。具体操作请参考在Linux环境中调测Spark应用。 将打包生成的jar包上传到Spark客户端所在服务器的任意目录(例如“$SPARK_HOME” )下。 若运行“Spark on HBase”样例程序,需要在Spark客户端的“spark-defaults
用户表必须存在。 indexspecs.to.add中指定的索引不能已存在于表中。 indexnames.to.build中指定的索引名称必须已经存在于表中,或者应该是indexspecs.to.add的一部分。 在执行前面的命令之后,indexspecs.to.add中指定的所有索
复的查询到,如果存在较多的重复记录,将这个值设置为true可以提升效率,否则,建议关闭。 建议按默认配置,默认就是true,只要不强制设置成false就可以,例如: HColumnDescriptor fieldADesc = new HColumnDescriptor("value"
通过IDEA自带的Maven工具,打包项目,生成jar包。具体操作请参考在Linux环境中编包并运行Spark程序。 将打包生成的jar包上传到Spark客户端所在服务器的任意目录(例如“$SPARK_HOME” )下。 若运行“Spark on HBase”样例程序,需要在Spark客户端的“spark-defaults
通过IDEA自带的Maven工具,打包项目,生成jar包。具体操作请参考在Linux环境中调测Spark应用。 将打包生成的jar包上传到Spark客户端所在服务器的任意目录(例如“$SPARK_HOME” )下。 若运行“Spark on HBase”样例程序,需要在Spark客户端的“spark-defaults
Spark Streaming调优 操作场景 Streaming作为一种mini-batch方式的流式处理框架,它主要的特点是秒级时延和高吞吐量。因此Streaming调优的目标是在秒级延迟的情景下,提高Streaming的吞吐能力,在单位时间处理尽可能多的数据。 本章节适用于输入数据源为Kafka的使用场景。
数据序列化 操作场景 Spark支持两种方式的序列化 : Java原生序列化JavaSerializer Kryo序列化KryoSerializer 序列化对于Spark应用的性能来说,具有很大的影响。在特定的数据格式的情况下,KryoSerializer的性能可以达到JavaS
Spark Core数据序列化 操作场景 Spark支持两种方式的序列化 : Java原生序列化JavaSerializer Kryo序列化KryoSerializer 序列化对于Spark应用的性能来说,具有很大的影响。在特定的数据格式的情况下,KryoSerializer的性
Spark Core数据序列化 操作场景 Spark支持两种方式的序列化 : Java原生序列化JavaSerializer Kryo序列化KryoSerializer 序列化对于Spark应用的性能来说,具有很大的影响。在特定的数据格式的情况下,KryoSerializer的性
Spark Structured Streaming样例程序(Scala) 功能介绍 在Spark应用中,通过使用StructuredStreaming调用Kafka接口来获取单词记录,然后把单词记录分类统计,得到每个单词记录数。 代码样例 下面代码片段仅为演示,具体代码参见:com
Spark Streaming性能调优 操作场景 Streaming作为一种mini-batch方式的流式处理框架,它主要的特点是:秒级时延和高吞吐量。因此Streaming调优的目标:在秒级延迟的情景下,提高Streaming的吞吐能力,在单位时间处理尽可能多的数据。 本章节适用于输入数据源为Kafka的使用场景。
Spark Streaming性能调优 操作场景 Streaming作为一种mini-batch方式的流式处理框架,它主要的特点是:秒级时延和高吞吐量。因此Streaming调优的目标:在秒级延迟的情景下,提高Streaming的吞吐能力,在单位时间处理尽可能多的数据。 本章节适用于输入数据源为Kafka的使用场景。