内容选择
全部
内容选择
内容分类
  • 学堂
  • 博客
  • 论坛
  • 开发服务
  • 开发工具
  • 直播
  • 视频
  • 用户
时间
  • 一周
  • 一个月
  • 三个月
  • 深度学习应用开发》学习笔记-31

    shape,test_image.shape,test_labels.shape) #60000条训练集里再分了55000的训练5000的验证;2828代表图片尺寸 ``` (60000, 28, 28) (60000,) (10000, 28, 28) (10000,) ```python

    作者: 黄生
    520
    0
  • 深度学习之无监督学习算法

    无监督算法只处理“特征”,不操作监督信号。监督无监督算法之间的区别没有规范,严格的定义,因为没有客观的判断来区分监督者提供的值是特征还是目标。通俗地说,无监督学习是指从不需要人为注释样本的分布中抽取信息的大多数尝试。该术语通常与密度估计相关,学习从分布中采样,学习从分布中去噪,需要数据分布的流形,或是将数据中相关的样本聚类。 

    作者: 小强鼓掌
    950
    1
  • 适合新手的深度学习综述(6)--深度生成模型

    本文转载自机器之心。在本节中,我们将简要讨论其他深度架构,它们使用与深度神经网络类似的多个抽象层表示层,也称为深度生成模型 (deep generate Models, DGM)。Bengio(2009) 解释了深层架构,例如 Boltzmann machine (BM) Restricted Boltzmann

    作者: @Wu
    156
    1
  • 深度学习因果相关关系

    深度学习系统,学习的是输入输出之间复杂的相关性,但是学习不到其间的因果关系。虽然有人工神经网络通过构建和加强联系,深度学习从数学上近似了人类神经元突触的学习方式。训练数据被馈送到神经网络,神经网络会逐渐进行调整,直到以正确的方式做出响应为止。只要能够看到很多训练图像并具有足够

    作者: 初学者7000
    730
    1
  • 深度学习训练过程

    无监督训练过程,这也是传统神经网络区别最大的部分,可以看作是特征学习过程。具体的,先用无标定数据训练第一层,训练时先学习第一层的参数,这层可以看作是得到一个使得输出输入差别最小的三层神经网络的隐层,由于模型容量的限制以及稀疏性约束,使得得到的模型能够学习到数据本身的结构,从而

    作者: QGS
    1054
    3
  • 深度学习之经验E

    learning algorithm) 训练含有很多特征的数据集,然后学习出这个数据集上有用的结构性质。在深度学习中,我们通常要学习生成数据集的整个概率分布,显式地,比如密度估计,或是隐式地,比如合成或去噪。还有一些其他类型的无监督学习任务,例如聚类,将数据集分成相似样本的集合。

    作者: 小强鼓掌
    1164
    3
  • 深度学习框架MindSpore介绍

    些端云联合学习方法框架被提出来,旨在联合多个端侧设备共同训练一个全局模型,并实现端侧隐私保护。Google率先于2016年提出了联邦学习方法框架。杨强等又提出了横向联邦学习、纵向联邦学习、联邦迁移学习以及联邦强化学习等方法及对应的框架。端侧推理、迁移学习联邦学习属于端云协同

    作者: 运气男孩
    894
    2
  • 深度学习入门》笔记 - 07

    导数等于零,解方程得到bw的估计值。但是这个方法只适合少数结构比较简单的模型(比如线性回归模型),不能求解深度学习这类复杂模型的参数。 所以下面介绍的是深度学习中常用的优化算法:`梯度下降法`。其中有三个不同的变体:随机梯度下降法、全数据梯度下降法、批量随机梯度下降法。

    作者: 黄生
    156
    2
  • 深度学习之浅层网络

    存在一些函数族能够在网络的深度大于某个值 d 时被高效地近似,而当深度被限制到小于或等于 d 时需要一个远远大于之前的模型。在很多情况下,浅层模型所需的隐藏单元的数量是 n 的指数级。这个结果最初被证明是在那些不与连续可微的神经网络类似的机器学习模型中出现,但现在已经扩展到了这些模型。第一个结果是关于逻辑门电路的

    作者: 小强鼓掌
    841
    1
  • 深度学习笔记之贡献

    2014) 等。我们期待深度学习未来能够出现在越来越多的科学领域中。      总之,深度学习是机器学习的一种方法。在过去几十年的发展中,它大量借鉴了我们关于人脑、统计学应用数学的知识。近年来,得益于更强大的计算机、更大的数据集能够训练更深网络的技术,深度学习的普及性实用性都有了极大

    作者: 小强鼓掌
    856
    2
  • 深度学习之权重比例

    权重比例推断规则在其他设定下也是精确的,包括条件正态输出的回归网络以及那些隐藏层不包含非线性的深度网络。然而,权重比例推断规则对具有非线性的深度模型仅仅是一个近似。虽然这个近似尚未有理论上的分析,但在实践中往往效果很好。Goodfellow et al. (2013b) 实验发现

    作者: 小强鼓掌
    953
    2
  • 学习笔记-如何提升深度学习性能?

    重新定义问题2. 从算法上提升性能   a. 算法的筛选 b. 从文献中学习 c. 重采样的方法3. 从算法调优上提升性能   a. 模型可诊断性 b. 权重的初始化 c. 学习率 d. 激活函数 e. 网络结构 f. batchepoch g. 正则项 h. 优化目标 i. 提早结束训练4

    作者: RabbitCloud
    632
    1
  • 深度学习替代职业

    科技公司通过基于GAN的深度学习开发了一种名为“自动全身模型生成人工智能”的技术,他们完全是由人工智能虚拟而成,时尚品牌或广告代理商因而可以不用支付模特酬劳,也不用负担拍摄相关的人员、场地、灯光、设备、甚至是餐饮等成本,这意味着人工智能已经完全可以取代人类模特拍摄时尚宣传广告了。

    作者: 初学者7000
    959
    5
  • 深度学习的现实应用

    Transformers)模型,采用迁移学习微调的方法,进一步刷新了深度学习方法在自然语言处理任务上的技术前沿。到目前为止,面向自然语言处理任务的深度学习架构仍在不断进化,与强化学习、无监督学习等的结合应该会带来效果更优的模型。1.3.4 其他领域深度学习在其他领域(如生物学、医疗和金融

    作者: 角动量
    2054
    4
  • 深度学习之超参数

    大多数机器学习算法都有设置超参数,可以用来控制算法行为。超参数的值不是通过学习算法本身学习出来的(尽管我们可以设计一个嵌套的学习过程,一个学习算法为另一个学习算法学出最优超参数)。所示的多项式回归实例中,有一个超参数:多项式的次数,作为容量超参数。控制权重衰减程度的 λ 是另一个

    作者: 小强鼓掌
    942
    2
  • 深度学习之任务T

    机器学习可以让我们解决一些人为设计实现固定程序很难解决的问题。从科学哲学的角度来看,机器学习受到关注是因为提高我们对机器学习的认识需要提高我们对智能背后原理的理解。如果考虑“任务”比较正式的定义,那么学习的过程并不是任务。在相对正式的 “任务”定义中,学习过程本身并不是任务。

    作者: 小强鼓掌
    823
    3
  • 华为云深度学习

    让您的分布式训练代码开发量缩短近10倍训练速度快1000块GPU集群0.8的线性加速比,原先一个月的模型训练时间,现在1小时搞定机会难得,小伙伴们还不抓紧来体验,数量有限,先到先得哦!!点击访问华为云深度学习官网

    作者: 斑馬斑馬
    331
    0
  • 人工智能与机器学习深度学习区别

    年来发展迅速,得益于大数据高性能计算的发展,在多个领域取得了突破性的进展综上所述,人工智能是一个广义的概念,涵盖了机器学习深度学习等多个子领域。机器学习是人工智能的一个重要分支,专注于使用数据算法使计算机能够模仿人类的学习方式。深度学习则是机器学习的一个子集,通过利用复杂算

    作者: Jack20
    13
    1
  • 深度学习应用开发》学习笔记-09

    的,而设定的需求类型并没有生效:v2=tf.Variable([3,4],tf.float32)tf里的变量普通编程语言里的变量是有区别的,区别在于tf里的变量设计为学习中自动优化自动调整它的值,一般无需人工进行赋值,所以它的trainable参数默认是启用的,当然如果是要冻结这些值的时候,就不启用它了

    作者: 黄生
    1746
    3
  • 深度学习的特点

    深度学习区别于传统的浅层学习深度学习的不同在于: (1)强调了模型结构的深度,通常有5层、6层,甚至10多层的隐层节点;(2)明确了特征学习的重要性。也就是说,通过逐层特征变换,将样本在原空间的特征表示变换到一个新特征空间,从而使分类或预测更容易。与人工规则构造特征的方法相比,

    作者: QGS
    597
    2