检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
通过打印所有Pod的信息,并找到命名有scheduler字段的Pod。 kubectl get pod -A -o wide 重启该Pod,通过delete的方式删除,但随后会自动重新启动。 kubectl delete pod -n kube-system ${pod_scheduler_name}
mox.file与本地接口的对应关系和切换 API对应关系 Python:指本地使用Python对本地文件的操作接口。支持一键切换为对应的MoXing文件操作接口(mox.file)。 mox.file:指MoXing框架中用于文件操作的接口,其与python接口一一对应关系。 tf
微调指令的模板 self.prompter 将数据集中 instruction、input、output 关键字的内容进行拼接,并用于训练。拼接方式如下,其中 {instruction}、{input}、{output} 分别对应数据集中 instruction、input、output
16的模型权重之后,通过autoAWQ工具进行量化。 方式一:从开源社区下载发布的AWQ量化模型。 https://huggingface.co/models?sort=trending&search=QWEN+AWQ 方式二:使用AutoAWQ量化工具进行量化。 AutoAWQ
16的模型权重之后,通过autoAWQ工具进行量化。 方式一:从开源社区下载发布的AWQ量化模型。 https://huggingface.co/models?sort=trending&search=QWEN+AWQ 方式二:使用AutoAWQ量化工具进行量化。 AutoAWQ
16的模型权重之后,通过autoAWQ工具进行量化。 方式一:从开源社区下载发布的AWQ量化模型。 https://huggingface.co/models?sort=trending&search=QWEN+AWQ 方式二:使用AutoAWQ量化工具进行量化。 1、在容器中使用ma-user用户,
16的模型权重之后,通过autoAWQ工具进行量化。 方式一:从开源社区下载发布的AWQ量化模型。 https://huggingface.co/models?sort=trending&search=QWEN+AWQ 方式二:使用AutoAWQ量化工具进行量化。 AutoAWQ
16的模型权重之后,通过autoAWQ工具进行量化。 方式一:从开源社区下载发布的AWQ量化模型。 https://huggingface.co/models?sort=trending&search=QWEN+AWQ 方式二:使用AutoAWQ量化工具进行量化。 AutoAWQ
通过打印所有Pod的信息,并找到命名有scheduler字段的Pod。 kubectl get pod -A -o wide 重启该Pod,通过delete的方式删除,但随后会自动重新启动。 kubectl delete pod -n kube-system ${pod_scheduler_name}
通过打印所有Pod的信息,并找到命名有scheduler字段的Pod。 kubectl get pod -A -o wide 重启该Pod,通过delete的方式删除,但随后会自动重新启动。 kubectl delete pod -n kube-system ${pod_scheduler_name}
在“资产版本”填写新的版本号。 发布HiLens技能 表1 发布HiLens技能的参数说明 参数 说明 资产分类 选择“模型”。 发布方式 发布方式选择“创建新资产”。 资产标题 在AI Gallery显示的资产名称,建议按照您的实现目的设置。 来源 选择“HiLens”。 HiLens区域
排序字段。可选值如下: create_time:根据创建时间排序 task_name:根据任务名称进行排序 sort_dir 否 String 排序方式。可选值如下: asc:按照升序排序 desc:默认值,按照降序排序 父主题: 标注任务管理
通过打印所有Pod的信息,并找到命名有scheduler字段的Pod。 kubectl get pod -A -o wide 重启该Pod,通过delete的方式删除,但随后会自动重新启动。 kubectl delete pod -n kube-system ${pod_scheduler_name}
通过打印所有Pod的信息,并找到命名有scheduler字段的Pod。 kubectl get pod -A -o wide 重启该Pod,通过delete的方式删除,但随后会自动重新启动。 kubectl delete pod -n kube-system ${pod_scheduler_name}
allery的资产在上传过程中,有可能会因为网络劫持、数据缓存等原因,存在数据不一致的问题。ModelArts提供通过计算SHA256值的方式对上传下载的数据进行一致性校验。 数据隔离机制 在ModelArts的开发环境中创建Notebook实例时,数据存储是按照租户隔离,租户之间互相看不到数据。
微调指令的模板 self.prompter 将数据集中 instruction、input、output 关键字的内容进行拼接,并用于训练。拼接方式如下,其中 {instruction}、{input}、{output} 分别对应数据集中 instruction、input、output
情况。 退出码139 请排查安装包的版本,可能存在包冲突的问题。 排查办法 根据错误信息判断,报错原因来源于用户代码。 您可以通过以下两种方式排查: 线上环境调试代码(仅适用于非分布式代码) 在开发环境(notebook)申请相同规格的开发环境实例。 在notebook调试用户代码,并找出问题的代码段。
multi-step参数设置 启动推理服务时,使用multi-step调度需要配置的参数如下表所示。 表1 开启multi-step调度参数配置 服务启动方式 配置项 取值类型 配置说明 offline num_scheduler_steps int 连续运行模型的步数。 默认为1,推荐设置为8
|——AscendCloud-OPP #依赖算子包 工作目录介绍 详细的工作目录参考如下,建议参考以下要求设置工作目录。训练脚本以分类的方式集中在 scripts 文件夹中。 ${workdir}(例如/home/ma-user/ws ) |──llm_train
因此EVS系统盘将不支持扩容,并显示信息:“当前订单已到期,无法进行扩容操作,请续订”。 中 切换或者重置操作系统后,建议通过挂载数据盘EVS或挂载SFS盘等方式进行存储扩容。 父主题: Lite Server使用前必读