检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
创建Workflow服务部署节点 功能介绍 通过对ModelArts服务管理能力的封装,实现Workflow新增服务和更新服务的能力。主要应用场景如下: 将模型部署为一个Web Service。 更新已有服务,支持灰度更新等能力。 属性总览 您可以使用ServiceStep来构建
Cluster资源池节点故障如何定位 故障说明和处理建议 图1 Lite池故障处理流程 对于ModelArts Lite资源池,每个节点会以DaemonSet方式部署node-agent组件,该组件会检测节点状态,并将检测结果写到K8S NodeCondtition中。同时,节点
使用ModelArts Studio的DeepSeek-R1模型框架实现对话问答 场景描述 本案例用于指导用户使用ModelArts Studio大模型即服务平台(下面简称为MaaS)的DeepSeek-R1模型框架,快速实现对话问答。更多MaaS服务的使用指导,请参见用户指南。
推理性能测试 本章节介绍如何进行推理性能测试,建议在Notebook的JupyterLab中另起一个Terminal,执行benchmark脚本进行性能测试。若需要在生产环境中进行推理性能测试,请通过调用接口的方式进行测试。 benchmark方法介绍 性能benchmark包括两部分。
LLaMA-VID基于Lite Server适配PyTorch NPU推理指导(6.3.910) 方案概览 本方案介绍了在ModelArts Lite Server上使用昇腾计算资源Ascend Snt9B开展LLaMA-VID的推理过程。 约束限制 本方案目前仅适用于企业客户。
准备代码 本教程中用到的训练推理代码和如下表所示,请提前准备好。 获取模型软件包和权重文件 本方案支持的模型对应的软件和依赖包获取地址如表1所示,模型列表、对应的开源权重获取地址如表1所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-6
准备代码 本教程中用到的训练推理代码和如下表所示,请提前准备好。 获取模型软件包和权重文件 本方案支持的模型对应的软件和依赖包获取地址如表1所示,模型列表、对应的开源权重获取地址如表1所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-6
CogVideoX1.5 5b 和 CogVideoX 5b模型基于Lite Server全量8卡序列并行推理指导(6.5.901) 本文档主要介绍如何在ModelArts的Lite Server环境中,使用NPU卡对CogVideoX1.5 5b,CogVideoX 5b模型进
FLUX.1基于DevSever适配PyTorch NPU Finetune&Lora训练指导(6.3.911) Flux是一种基于扩散过程的图像生成模型,应用于文生图场景,能够帮助用户生成图像。 方案概览 本方案介绍了在ModelArts Lite Server上使用昇腾计算资源Ascend
通过APP认证的方式访问在线服务 部署在线服务支持开启APP认证,即ModelArts会为服务注册一个支持APP认证的接口,为此接口配置APP授权后,用户可以使用授权应用的AppKey+AppSecret或AppCode调用该接口。 针对在线服务的APP认证,具体操作流程如下。
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Standard上的预训练和全量微调方案。 本方案目前仅适用于部分企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Standard上的预训练和全量微调方案。 本方案目前仅适用于部分企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。
查看模型评估结果 训练作业运行结束后,ModelArts可为您的模型进行评估,并且给出调优诊断和建议。 针对使用预置算法创建训练作业,无需任何配置,即可查看此评估结果(由于每个模型情况不同,系统将自动根据您的模型指标情况,给出一些调优建议,请仔细阅读界面中的建议和指导,对您的模型进行进一步的调优)。
CogVideoX1.5 5b模型基于Lite Server适配PyTorch NPU全量训练指导(6.5.901) 本文档主要介绍如何在ModelArts的Lite Server环境中,使用NPU卡对CogVideoX模型进行全量微调。本文档中提供的脚本,是基于原生CogVid
CogVideoX1.5 5b模型基于Lite Server适配PyTorch NPU全量训练指导(6.3.912) 本文档主要介绍如何在ModelArts的Lite Server环境中,使用NPU卡对CogVideoX模型进行全量微调。本文档中提供的脚本,是基于原生CogVid
es_total HBM多比特错误隔离内存页数量。说明: 如果此计数达到64及以上,请更换此NPU。 个 ≥0 连续2个周期原始值 >= 64 严重 如果此计数达到64及以上,请提交工单,切换NPU机器 AI处理器Vector CORE利用率 ma_node_npu_vector_core_util
构建条件节点控制分支执行 功能介绍 主要用于执行流程的条件分支选择,可以简单的进行数值比较来控制执行流程,也可以根据节点输出的metric相关信息决定后续的执行流程。主要应用场景如下: 可以用于需要根据不同的输入值来决定后续执行流程的场景。例如:需要根据训练节点输出的精度信息来决
创建训练作业 示例代码 在ModelArts notebook平台,Session鉴权无需输入鉴权参数。其它平台的Session鉴权请参见Session鉴权。 ModelArts SDK不支持通过在AI Gallery中订阅的算法创建训练作业。 示例一:提交常用框架训练作业 Es
在Notebook调试环境中部署推理服务 在ModelArts的开发环境Notebook中可以部署推理服务进行调试。 Step1 准备Notebook 参考准备Notebook完成Notebook的创建,并打开Notebook。 Step2 准备模型代码包和权重文件 将OBS中的
开发第一条Workflow 本章节提供了一个基于图像分类算法,构建包含训练单节点的Workflow的样例。更多节点的构建参数请参考创建Workflow节点。 步骤一:安装开发环境 本案例提供了两种安装开发环境的方法,您可根据使用习惯选择。 方法一:使用JupyterLab打开Notebook实例准备环境