检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
MA-Advisor和Ascend-Insigh工具使用指导 MA-Advisor:一款昇腾迁移性能问题自动诊断工具,支持对推理、训练等多种场景进行自动诊断。自动诊断工具可以有效减少人工分析profiling的耗时,降低性能调优的门槛,帮助客户快速识别性能瓶颈点并完成性能优化。推荐用户在采集profiling分
基础镜像中的Cann软件版本版本匹配。 ModelArts上支持的Ascend驱动版本可以在ModelArts专属资源池(NEW)的详情页面查看到。ModelArts上支持的Cann软件版本可以在训练基础镜像详情页面查看,具体请参见训练基础镜像详情(Ascend-Powered-Engine)。
查看日志和性能 查看日志 训练过程中,训练日志会在最后的Rank节点打印。 图1 打印训练日志 训练完成后,如果需要单独获取训练日志文件,可以在${SAVE_PATH}/logs路径下获取。日志存放路径为:/home/ma-user/ws/saved_dir_for_ma_output/llama2-70b/logs
查看日志和性能 查看日志 训练过程中,训练日志会在最后的Rank节点打印。 图1 打印训练日志 训练完成后,如果需要单独获取训练日志文件,可以在${SAVE_PATH}/logs路径下获取。日志存放路径为:/home/ma-user/ws/saved_dir_for_ma_output/llama2-70b/logs
查看日志和性能 查看日志 训练过程中,训练日志会在最后的Rank节点打印。 图1 打印训练日志 训练完成后,如果需要单独获取训练日志文件,可以在${SAVE_PATH}/logs路径下获取。日志存放路径为:/home/ma-user/ws/saved_dir_for_ma_output/llama2-70b/logs
具,面对复杂问题时,才能进行进一步诊断与定位,进而发挥NPU的能力。 性能调优可以先将重点放在NPU不亲和的问题处理上,确保一些已知的性能问题和优化方法得到较好的应用。通用的训练任务调优、参数调优可以通过可观测数据来进行分析与优化,一般来说分段对比GPU的运行性能会有比较好的参考
pipeline输出的结果图片进行对比,在这里保证输入图片及文本提示词一致。如果差异较为明显可以进行模型精度调优。 确认性能是否满足要求 在推理代码开始结尾处加入时间记录,并打印出推理执行耗时。根据用户需求判断性能是否满足要求,如果不满足可以进行性能调优。 import time start_time = time
精度问题处理 设置高精度并重新转换模型 在转换模型时,默认采用的精度模式是fp16,如果转换得到的模型和标杆数据的精度差异比较大,可以使用fp32精度模式提升模型的精度(精度模式并不总是需要使用fp32,因为相对于fp16,fp32的性能较差。因此,通常只在检测到某个模型精度存在
F1值是模型精确率和召回率的加权调和平均,用于评价模型的好坏,当F1较高时说明模型效果较好。 同一个自动学习项目可以训练多次,每次训练生成一个版本。如第一次训练版本号为“0.0.1”,下一个版本为“0.0.2”。基于训练版本可以对训练模型进行管理。当训练的模型达到目标后,再执行模型部署的操作。 父主题: 使用自动学习实现文本分类
设置无条件自动重启 背景信息 训练过程中可能会碰到预期外的情况导致训练失败,且无法及时重启训练作业,导致训练周期长,而无条件自动重启可以避免这类问题。无条件自动重启是指当训练作业失败时,不管什么原因系统都会自动重启训练作业,提高训练成功率和提升作业的稳定性。为了避免无效重启浪费算
下: 对于数据标注这种操作,可以在标注完成后自动帮助用户发布新的数据集版本,结合as_input的能力提供给后续节点使用。 当模型训练需要更新数据时,可以使用数据集导入节点先导入新的数据,然后再通过该节点发布新的版本供后续节点使用。 属性总览 您可以使用ReleaseDatase
<模型下载路径> 方法三:使用专用多线程下载器 hfd:hfd 是本站开发的 huggingface 专用下载工具,基于成熟工具 git+aria2,可以做到稳定下载不断线。 方法四:使用Git clone,官方提供了git clone repo_url 的方式下载,但是不支持断点续传,并且clone会下载历史版本占用磁盘空间。
<模型下载路径> 方法三:使用专用多线程下载器 hfd:hfd 是本站开发的 huggingface 专用下载工具,基于成熟工具 git+aria2,可以做到稳定下载不断线。 方法四:使用Git clone,官方提供了git clone repo_url 的方式下载,但是不支持断点续传,并且clone会下载历史版本占用磁盘空间。
集。 MBS 1 表示流水线并行中一个micro batch所处理的样本量。在流水线并行中,为了减少气泡时间,会将一个step的数据切分成多个micro batch。 该值与TP和PP以及模型大小相关,可根据实际情况进行调整。 GBS 128 表示训练中所有机器一个step所处理的样本量。影响每一次训练迭代的时长。
集。 MBS 4 表示流水线并行中一个micro batch所处理的样本量。在流水线并行中,为了减少气泡时间,会将一个step的数据切分成多个micro batch。 该值与TP和PP以及模型大小相关,可根据实际情况进行调整。 GBS 512 表示训练中所有机器一个step所处理的样本量。影响每一次训练迭代的时长。
查看日志和性能 查看日志 训练过程中,训练日志会在最后的Rank节点打印。 图1 打印训练日志 训练完成后,如果需要单独获取训练日志文件,可以在${SAVE_PATH}/logs路径下获取。日志存放路径为:/home/ma-user/ws/saved_dir_for_ma_output/llama2-70b/logs
查看日志和性能 查看日志 训练过程中,训练日志会在最后的Rank节点打印。 图1 打印训练日志 训练完成后,如果需要单独获取训练日志文件,可以在${SAVE_PATH}/logs路径下获取。日志存放路径为:/home/ma-user/ws/saved_dir_for_ma_output/llama2-70b/logs
rver资源。 准备代码 准备AscendSpeed训练代码、分词器Tokenizer和推理代码。 准备数据 准备训练数据,可以用本案使用的数据集,也可以使用自己准备的数据集。 准备镜像 准备训练模型适用的容器镜像。 预训练 预训练 介绍如何进行预训练,包括训练数据处理、超参配置、训练任务、断点续训及性能查看。
集。 MBS 4 表示流水线并行中一个micro batch所处理的样本量。在流水线并行中,为了减少气泡时间,会将一个step的数据切分成多个micro batch。 该值与TP和PP以及模型大小相关,可根据实际情况进行调整。 GBS 512 表示训练中所有机器一个step所处理的样本量。影响每一次训练迭代的时长。
集。 MBS 1 表示流水线并行中一个micro batch所处理的样本量。在流水线并行中,为了减少气泡时间,会将一个step的数据切分成多个micro batch。 该值与TP和PP以及模型大小相关,可根据实际情况进行调整。 GBS 128 表示训练中所有机器一个step所处理的样本量。影响每一次训练迭代的时长。