检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
果您的无监督文档量级过小,达不到预训练要求,您可以通过一些手段将其转换为有监督数据,再将转换后的领域知识与目标任务数据混合,使用微调的方式让模型学习。 这里提供了一些将无监督数据转换为有监督数据的方案,供您参考: 基于规则构建:您可以通过采用一些简单的规则来构建有监督数据。比如:
是一种预付费方式,按订单的购买周期计费,适用于可预估资源使用周期的场景。 按需计费模式:按需付费是后付费方式,可以随时开通/关闭对应资源,支持秒级计费,系统会根据云服务器的实际使用情况每小时出账单,并从账户余额里扣款。 父主题: 计费FAQ
Failed 未满足前提条件,服务器未满足请求者在请求中设置的其中一个前提条件。 413 Request Entity Too Large 由于请求的实体过大,服务器无法处理,因此拒绝请求。为防止客户端的连续请求,服务器可能会关闭连接。如果只是服务器暂时无法处理,则会包含一个Retry-After的响应信息。
llation_001.html 步骤4:创建证书 如图7,如果在“边缘资源池”页签提示无可用的证书,可以参考以下方法创建证书。 图7 无可用证书 准备一台Linux系统的服务器(已安装OpenSSL),依次执行以下命令制作证书。 执行命令时会提示输入至少四位的密码,例如:123456,需记住密码后续步骤会使用。
配比图片类数据集 数据配比是将多个数据集按照特定比例关系组合并发布为“发布数据集”的过程,确保数据的多样性、平衡性和代表性。 如果单个数据集已满足您的需求,可跳过此章节至发布图片类数据集。 创建图片类数据集配比任务 创建图片类数据集配比任务步骤如下: 登录ModelArts St
HTTP请求方法,表示服务正在请求操作类型,包括: GET:请求服务器返回指定资源。 PUT:请求服务器更新指定资源。 POST:请求服务器新增资源或执行特殊操作。 DELETE:请求服务器删除指定资源,如删除对象等。 HEAD:请求服务器资源头部。 PATCH:请求服务器更新资源的部分内容。当资源不存在的时
如何利用提示词提高大模型在难度较高推理任务中的准确率 可以通过思维链的方式提高大模型在复杂推理任务中的准确率。 思维链是一种通过分步骤推理来提升大模型在复杂任务中表现的方法。通过引导模型思考问题的过程,可以使其在推理任务中得到更高的准确性,尤其是在涉及多步推理和复杂逻辑关系的任务中。
通过诱导用户下载事先写好的木马病毒:\n可以通过诱惑用户去下载某些“小便宜”,然后通过木马程序来控制用户的主机。\n2. 通过网站入侵: \n如果目标主机是一台网络服务器,可以通过找上传漏洞,然后传木马上去。如果没有上传漏洞,可以通过找SQL注入,进入后台,上传木马,提取,控制目标服务器。"} {"co
大模型(Large Models)通常指的是具有海量参数和复杂结构的深度学习模型,广泛应用于自然语言处理(NLP)等领域。开发一个大模型的流程可以分为以下几个主要步骤: 数据集准备:大模型的性能往往依赖于大量的训练数据。因此,数据集准备是模型开发的第一步。首先,需要根据业务需求收集相
配比文本类数据集 数据配比是将多个数据集按照特定比例关系组合并发布为“发布数据集”的过程,确保数据的多样性、平衡性和代表性。 如果单个数据集已满足您的需求,可跳过此章节至发布文本类数据集。 创建文本类数据集配比任务 创建文本类数据集配比任务步骤如下: 登录ModelArts St
示不同的比较条件,具体可以前端页面为准。 比较对象、值:条件表达式右边部分,支持“引用”和“输入”两种类型。 引用:支持用户选择工作流中已包含的前置节点输出变量值。 输入:支持用户自定义取值。 添加条件:单击“添加条件”,在当前分支添加多个条件表达式,多个条件表达式之间通过“且”或“或”来连接。
详情请参见区域和可用区。 可用区(AZ,Availability Zone) 一个AZ是一个或多个物理数据中心的集合,有独立的风火水电,AZ内逻辑上再将计算、网络、存储等资源划分成多个集群。一个Region中的多个AZ间通过高速光纤相连,以满足用户跨AZ构建高可用性系统的需求。 项目 华为云的
的节点,实现复杂业务流程的编排,从而快速构建应用。 工作流方式主要面向目标任务包含多个复杂步骤、对输出结果成功率和准确率有严格要求的复杂业务场景。 在编排工作流时,可以使用以下节点进行功能设计: 开始节点:开始节点是工作流的起始节点,用户输入的信息由开始节点传入。 结束节点:结束
单击训练任务名称,可以在“日志”页面查看训练过程中产生的日志。 对于训练异常或失败的任务可以通过训练日志定位训练失败的原因。典型训练报错和解决方案请参见NLP大模型训练常见报错与解决方案。 训练日志可以按照不同的节点(训练阶段)进行筛选查看。分布式训练时,任务被分配到多个工作节点上进行
基于对话问答功能,用户可以与模型进行自然而流畅的对话和交流。 - 通用文本(/text/completions) Java、Python、Go、.NET、NodeJs、PHP 给定一个提示和一些参数,模型会根据这些信息生成一个或多个预测的补全,还可以返回每个位置上不同词语的概率。它可以用来做文本生成、自动写作、代码补全等任务。
ModelArts Studio大模型开发平台针对文本类数据集预设了一套基础评估标准,涵盖了数据准确性、完整性、一致性、格式规范等多个维度,用户可以直接使用该标准或在该标准的基础上创建评估标准。 若您希望使用平台预置的评估标准,可跳过此章节至创建文本类数据集评估任务。 创建文本类数据集评估标准步骤如下:
查看数据集基本信息。在“基本信息”页签,可以查看数据详情、数据来源以及扩展信息。 下载原始数据集。在“数据预览”页签,可以查看数据内容,单击右上角“下载”即可下载原始数据集。 查看数据血缘。在“数据血缘”页签,可以查看当前数据集所经历的完整操作,如加工、标注等。 查看操作记录。在“操作记录”页签,可以查看当前数
资产管理方式。平台支持用户根据不同的使用场景、项目类别或团队需求,自定义创建多个工作空间。每个工作空间都是完全独立的,确保了工作空间内的资产不受其他空间的影响,从而保障数据和资源的隔离性与安全性。用户可以根据需求灵活划分工作空间,实现资源的有序管理与优化配置,确保各类资源在不同场
零样本 对于无样本的任务,可以采用让模型分步思考的方法来分解复杂推理或数学任务,在问题的结尾可以加上“分步骤解决问题”或者“让我们一步一步地思考”,以引导大模型进行逐步的推理和解答。 通过上述指令,将一个推理任务拆解分步骤进行,可以降低推理任务的难度并可以增强答案可解释性。另外,相
全球中期天气要素预测:通过该模型可以对未来一段时间的天气进行预测。 全球中期降水预测:通过该模型可以对未来一段时间的降水情况进行预测。 模型服务 支持选择用于启动推理作业的模型。 中期天气要素模型包括1h分辨率、3h分辨率、6h分辨率、24小时分辨率模型,即以起报时刻开始,分别可以逐1h、3h、6h、24h往后进行天气要素的预测。