检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Failed 未满足前提条件,服务器未满足请求者在请求中设置的其中一个前提条件。 413 Request Entity Too Large 由于请求的实体过大,服务器无法处理,因此拒绝请求。为防止客户端的连续请求,服务器可能会关闭连接。如果只是服务器暂时无法处理,则会包含一个Retry-After的响应信息。
请求什么类型的操作。 GET:请求服务器返回指定资源。 PUT:请求服务器更新指定资源。 POST:请求服务器新增资源或执行特殊操作。 DELETE:请求服务器删除指定资源,如删除对象等。 HEAD:请求服务器资源头部。 PATCH:请求服务器更新资源的部分内容。当资源不存在的时
创建文本类数据集评估标准 ModelArts Studio大模型开发平台针对文本数据集预设了一套基础评估标准,涵盖了数据准确性、完整性、一致性、格式规范等多个维度,用户可以直接使用该标准或在该标准的基础上创建评估标准。 若您希望使用平台预置的评估标准,可跳过此章节至创建文本类数据集评估任务。 创建文本类数据集评估标准步骤如下:
ModelArts Studio大模型开发平台针对图片数据集预设的一套评估标准,涵盖了图像清晰度、分辨率、标签准确性、图像一致性等多个质量维度,用户可以直接使用该标准或在该标准的基础上创建评估标准。 若您希望使用平台预置的评估标准,可跳过此章节至创建图片类数据集评估任务。 创建图片类数据集评估标准步骤如下:
创建视频类数据集评估标准 ModelArts Studio大模型开发平台针对视频数据集预设了一套评估标准,涵盖了视频的清晰度、帧率、完整性、标签准确性等多个质量维度,用户可以直接使用该标准或在该标准的基础上创建评估标准。 若您希望使用平台预置的评估标准,可跳过此章节至创建视频类数据集评估任务。 创建视频类数据集评估标准步骤如下:
结束组件。 结束组件可能会有多个输入,但是只能有一个输出值,因此需要开发者在“指定回复”中合并多个输入值为一个输出值。 单击画布中的“结束”组件,打开参数配置页面。 图4 结束组件配置图 在“参数配置”中,配置输入参数。 单击“添加参数”,可以添加多个输入参数。 表1 参数说明表
大模型(Large Models)通常指的是具有海量参数和复杂结构的深度学习模型,广泛应用于自然语言处理(NLP)等领域。开发一个大模型的流程可以分为以下几个主要步骤: 数据集准备:大模型的性能往往依赖于大量的训练数据。因此,数据集准备是模型开发的第一步。首先,需要根据业务需求收集相
详情请参见区域和可用区。 可用区(AZ,Availability Zone) 一个AZ是一个或多个物理数据中心的集合,有独立的风火水电,AZ内逻辑上再将计算、网络、存储等资源划分成多个集群。一个Region中的多个AZ间通过高速光纤相连,以满足用户跨AZ构建高可用性系统的需求。 项目 华为云的
ModelArts Studio大模型开发平台提供了全面的数据集质量评估工具,能够帮助用户从多个维度检测和优化数据集的质量。平台预设了多种数据类型的基础评估标准,用户可以直接使用这些标准,也可以根据具体的业务需求创建自定义的评估标准。通过这种灵活的配置方式,用户能够根据不同的应用场景
零样本 对于无样本的任务,可以采用让模型分步思考的方法来分解复杂推理或数学任务,在问题的结尾可以加上“分步骤解决问题”或者“让我们一步一步地思考”,以引导大模型进行逐步的推理和解答。 通过上述指令,将一个推理任务拆解分步骤进行,可以降低推理任务的难度并可以增强答案可解释性。另外,相
插件服务的鉴权方式,支持以下三种: 无需鉴权:不使用鉴权时会存在安全风险。 用户级鉴权:用户级鉴权可以使用Header鉴权或Query鉴权的方式,需要提供密钥鉴权参数名和密钥来源参数名。 API Key:API Key鉴权可以使用Header鉴权或Query鉴权的方式,需要提供密钥鉴权参数名和密钥值。
资产管理方式。平台支持用户根据不同的使用场景、项目类别或团队需求,自定义创建多个工作空间。每个工作空间都是完全独立的,确保了工作空间内的资产不受其他空间的影响,从而保障数据和资源的隔离性与安全性。用户可以根据需求灵活划分工作空间,实现资源的有序管理与优化配置,确保各类资源在不同场
果您的无监督文档量级过小,达不到预训练要求,您可以通过一些手段将其转换为有监督数据,再将转换后的领域知识与目标任务数据混合,使用微调的方式让模型学习。 这里提供了一些将无监督数据转换为有监督数据的方案,供您参考: 基于规则构建:您可以通过采用一些简单的规则来构建有监督数据。比如:
全球中期天气要素预测:通过该模型可以对未来一段时间的天气进行预测。 全球中期降水预测:通过该模型可以对未来一段时间的降水情况进行预测。 模型服务 支持选择用于启动推理作业的模型。 中期天气要素模型包括1h分辨率、3h分辨率、6h分辨率、24小时分辨率模型,即以起报时刻开始,分别可以逐1h、3h、6h、24h往后进行天气要素的预测。
基于对话问答功能,用户可以与模型进行自然而流畅的对话和交流。 - 通用文本(/text/completions) Java、Python、Go、.NET、NodeJs、PHP 给定一个提示和一些参数,模型会根据这些信息生成一个或多个预测的补全,还可以返回每个位置上不同词语的概率。它可以用来做文本生成、自动写作、代码补全等任务。
表1 视频类数据集格式要求 文件内容 文件格式 文件要求 视频 mp4或avi 支持mp4、avi视频格式上传,所有视频可以放在多个文件夹下,每个文件夹下可以同时包含mp4或avi格式的视频。 数据集最大1000万个文件,单文件最大100GB,整个数据集最大100TB。 父主题:
单击训练任务名称,可以在“日志”页面查看训练过程中产生的日志。对于训练异常或失败的任务也可以通过训练日志定位训练失败的原因。典型训练报错和解决方案请参见NLP大模型训练常见报错与解决方案。 训练日志可以按照不同的节点(训练阶段)进行筛选查看。分布式训练时,任务被分配到多个工作节点上进行
此示例演示了如何使用加工算子轻松构建单轮问答数据集。数据集的加工算子是一种灵活的数据预处理工具,能够帮助您将原始数据转化为所需的格式。通过使用加工算子,您可以提取、转换、过滤原始数据,生成适合大模型训练的数据集。 准备工作 请提前准备数据并上传至OBS服务,上传步骤请详见通过控制台快速使用OBS。
图片+Caption指的是一张图片和与之相关的文字描述,Caption是对图片内容的简短说明或解释,帮助人们理解图片所表达的信息。 图片:图片以tar包格式存储,可以多个tar包。tar包存储原始的图片,每张图片命名要求唯一(如abc.jpg)。 Caption:jsonl格式,图片描述jsonl文件放在
输入工作流名称及描述,单击“确定”,进入工作流编排页面。 图5 创建工作流 在工作流编排页面,平台已预先编排了开始、大模型与结束组件。 单击组件右上角的,可以进行组件的重命名、复制、删除操作。开始和结束组件为必选组件,无法删除。 图6 组件的重命名、复制、删除操作 鼠标拖动左侧“意图识别”组件至