检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
存储原始的图片,每张图片命名要求唯一(如abc.jpg)。 Caption:jsonl格式,图片描述jsonl文件放在最外层目录,一个tar包对应一个jsonl文件,文件内容中每一行代表一段文本,具体格式示例如下: {"image_name":"图片名称(abc.jpg)","tar_name":"tar包名称(1
增加人设可以让生成的内容更符合该领域需求。 例如,“假设你是一位银行面试官,请生成10个银行面试问题。”、“假如你是一个高级文案策划,请生成10个理财产品的宣传文案。”、“你是一个财务分析师,请分析上述财务指标的趋势。” 父主题: 提示词写作进阶技巧
问答场景中,也称为检索增强问答,如政务问答场景,行业客服智能问答场景等。 下面将以一个具体的政务问答助手为例进行说明。该场景通过收集政务问答数据和相关政务问答文档,基于检索增强问答框架,构建了一个智能化的政务问答助手。 图1 政务问答智能助手整体框架 上图给出了政务问答智能助手的
- 通用文本(/text/completions) Java、Python、Go、.NET、NodeJs、PHP 给定一个提示和一些参数,模型会根据这些信息生成一个或多个预测的补全,还可以返回每个位置上不同词语的概率。它可以用来做文本生成、自动写作、代码补全等任务。 开发环境要求 华为云盘古大模型推理SDK要求:
使用规则构建的优点是快速且成本低,缺点是数据多样性较低。 基于大模型的数据泛化:您可以通过调用大模型(比如盘古提供的任意一个规格的基础功能模型)来获取有监督场景。一个比较常见的方法是,将无监督的文本按照章节、段落、字符数进行切片,让模型基于这个片段生成问答对,再将段落、问题和答案三者
大模型开发基本概念 大模型相关概念 概念名 说明 大模型是什么 大模型是大规模预训练模型的简称,也称预训练模型或基础模型。所谓预训练模型,是指在一个原始任务上预先训练出一个初始模型,然后在下游任务中对该模型进行精调,以提高下游任务的准确性。大规模预训练模型则是指模型参数达到千亿、万亿级别的预训练模
部署后的模型可用于后续调用操作。 创建NLP大模型部署任务 查看NLP大模型部署任务详情 查看部署任务的详情,包括部署的模型基本信息、任务日志等。 查看NLP大模型部署任务详情 管理NLP大模型部署任务 可对部署任务执行执行描述、删除等操作。 管理NLP大模型部署任务 调用NLP大模型 使用“能力调测”调用NLP大模型
级模型版本,支持8K训练,4K/32K推理。基于Snt9B3卡可单卡推理部署,此模型版本支持全量微调、LoRA微调、INT8量化、断点续训、在线推理和能力调测特性。单卡部署4K模型版本支持64并发,单卡部署32K模型版本支持32并发。 Pangu-NLP-N1-Chat-128K-20241030
登录ModelArts Studio大模型开发平台,进入所需空间。 获取调用路径及部署ID。单击左侧“模型开发 > 模型部署”,选择所需调用的大模型,单击“调用路径”,在“调用路径”弹窗获取调用路径及部署ID。 请求参数 表1 请求Header参数 参数 是否必选 参数类型 描述 X-Auth-Token
提取图文压缩包中的JSON文本和图片,并对图片进行结构化解析(BASE64编码)。 数据过滤 图文文本长度过滤 过滤文本长度不在“文本长度范围”内的图文对。一个中文汉字或一个英文字母,文本长度均计数为1。 图文文本语言过滤 通过语种识别模型得到图文对的文本语种类型,“待保留语种”之外的图文对数据将被过滤。
xx问题,请给我具体的xxx问题,以便我更好地解答。” 复述任务要求 可以让模型复述prompt中的要求,考察模型是否理解。 比如“现在有一个xxx任务,我会给你xxx,你需要xxxx。\n\n现在你充分理解这个任务了吗?详细解释一遍,不用举例子/请举例说明。” 父主题: 提示词写作进阶技巧
用户可以根据需求灵活划分工作空间,实现资源的有序管理与优化配置,确保各类资源在不同场景中的最大化利用。为进一步优化资源的管理,平台还提供了多种角色权限体系。用户可以根据自身角色从管理者到各模块人员进行不同层级的权限配置,确保每个用户在其指定的工作空间内,拥有合适的访问与操作权限
使用盘古大模型服务前,需要进行一系列准备工作,确保您能够顺利使用盘古大模型服务。 准备工作 申请试用盘古大模型服务 配置服务访问授权 创建并管理盘古工作空间 04 AI一站式流程 通过一站式流程,完成从数据集准备、模型训练、压缩、部署到调用,全面掌握盘古大模型的开发过程。同时,结合应用开发的提示词工程、Agent应
“训练轮次”或“学习率”等参数的设置,根据实际情况调整训练参数,帮助模型更好学习。 Prompt设置:请检查您使用的Prompt,对于同一个目标任务,建议在推理阶段使用和训练数据相同或相似的PROMPT,才能发挥出模型的最佳效果。 模型规格:理论上模型的参数规模越大,模型能学到
查看NLP大模型部署任务详情 部署任务创建成功后,可以在“模型开发 > 模型部署”页面查看模型的部署状态。 当状态依次显示为“初始化 > 部署中 > 运行中”时,表示模型已成功部署,可以进行调用。 此过程可能需要较长时间,请耐心等待。在此过程中,可单击模型名称可进入详情页,查看模
杂推理或数学任务,在问题的结尾可以加上“分步骤解决问题”或者“让我们一步一步地思考”,以引导大模型进行逐步的推理和解答。 通过上述指令,将一个推理任务拆解分步骤进行,可以降低推理任务的难度并可以增强答案可解释性。另外,相比直接输出答案,分步解决也容许大模型有更多的“思考时间”,用更多的计算资源解决该问题。
围。例如,您的员工中有负责软件开发的人员,您希望他们拥有接口的调用权限,但是不希望他们拥有训练模型或者访问训练数据的权限,那么您可以先创建一个IAM用户,并设置该用户在盘古平台中的角色,控制对资源的使用范围。 IAM权限 默认情况下,管理员创建的IAM用户(子用户)没有任何权限,
_20180919_114745.xml”。 物体检测的标注文件需要满足PASCAL VOC格式,PASCAL_VOC是一个公开的图像标注数据集,它提供了一个统一的XML格式来存储标注信息。PASCAL_VOC文件格式包含图像目录、图像文件、图像尺寸、图像中目标信息等元素,详细格式说明请参见表4。
查看科学计算大模型部署任务详情 部署任务创建成功后,可以在“模型开发 > 模型部署”页面查看模型的部署状态。 当状态依次显示为“初始化 > 部署中 > 运行中”时,表示模型已成功部署,可以进行调用。 此过程可能需要较长时间,请耐心等待。在此过程中,可单击模型名称可进入详情页,查看
ss,并绘制成Loss曲线。本场景的一个Loss曲线示例如下: 图1 Loss曲线 通过观察,Loss曲线随着迭代步数的增加呈下降趋势直至稳定,证明整个训练状态是正常的。 模型持续优化: 本场景采用了下表中的推理参数进行解码,您可以在平台部署后参考如下参数调试: 表2 推理核心参数设置