检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
的大小限制是12MB,超过12MB时,请求会被拦截。 如果是从ModelArts console的预测页签进行的预测,由于console的网络链路的不同,此时要求请求体的大小不超过8MB。 因此,尽量避免请求体大小超限。如果有高并发的大流量推理请求,请提工单联系专业服务支持。 父主题:
选择“版本”页签,单击右上方的“编辑”。 在此页面可以修改版本说明或者单击对应版本“操作”列的“下线”,下架不需要的资产版本。下线操作仅对已上架成功且存在多个可用版本的资产有效。 在版本框右侧单击“添加版本”,弹出“选择云服务区域”,选择区域后单击“确定”跳转到“发布资产到AI Gallery”
autosearch_config_path String 自动化搜索作业的yaml配置路径,需要提供一个OBS路径。 autosearch_framework_path String 自动化搜索作业的框架代码目录,需要提供一个OBS路径。 command String 自定义镜像训练作业的自定义镜像的容器的启动命令。可填code_dir。
xx.xxx.xxx.xxx" --build-arg "http_proxy=http://xxx.xxx.xxx.xxx" --network=host -t <镜像名称>:<版本名称> . <镜像名称>:<版本名称>:定义镜像名称。示例:pytorch_2_2_ascend:20241106
更加安全的HTTPS协议。 数据完整性检查 推理部署功能模块涉及到的用户模型文件和发布到AIGallery的资产在上传过程中,有可能会因为网络劫持、数据缓存等原因,存在数据不一致的问题。ModelArts提供通过计算SHA256值的方式对上传下载的数据进行一致性校验。 数据隔离机制
模型训练中产生的通信输出存盘,并传输到同一节点来比较其一致性,从而确定模型中通信算子的精度是否存在问题。若已排除通信算子异常,则可能是由于网络层数增加放大了累积误差,需要使用精度比对等工具进一步分析。 图1 精度调优流程 父主题: PyTorch迁移精度调优
xx.xxx.xxx.xxx" --build-arg "http_proxy=http://xxx.xxx.xxx.xxx" --network=host --build-arg install_type=llamafactory -t <镜像名称>:<版本名称> . <镜像
xx.xxx.xxx.xxx" --build-arg "http_proxy=http://xxx.xxx.xxx.xxx" --network=host -t <镜像名称>:<版本名称> . <镜像名称>:<版本名称>:定义镜像名称。示例:pytorch_2_2_ascend:20241106
#检查docker是否安装 如尚未安装,运行以下命令安装docker。 yum install -y docker 配置IP转发,用于容器内的网络访问。执行以下命令查看net.ipv4.ip_forward配置项的值,如果为1,可跳过此步骤。 sysctl -p | grep net
DeletePoolV2 更新资源池 PoolV2 UpdatePoolV2 创建网络 NetworksV1 CreateNetworksV1 删除网络 NetworksV1 DeleteNetworksV1 更新网络 NetworksV1 UpdateNetworksV1 父主题: 使用CTS审计ModelArts服务
running on http://0.0.0.0:8080 (Press CTRL+C to quit) Step5 请求推理服务 另外启动一个terminal,使用命令测试推理服务是否正常启动,端口请修改为启动服务时指定的端口。 方式一:使用vLLM接口请求服务,命令参考如下。 curl
xx.xxx.xxx.xxx" --build-arg "http_proxy=http://xxx.xxx.xxx.xxx" --network=host -t <镜像名称>:<版本名称> . <镜像名称>:<版本名称>:定义镜像名称。示例:pytorch_2_1_ascend:20240606
xx.xxx.xxx.xxx" --build-arg "http_proxy=http://xxx.xxx.xxx.xxx" --network=host -t <镜像名称>:<版本名称> . <镜像名称>:<版本名称>:定义镜像名称。示例:pytorch_2_1_ascend:20240606
e.sh 使用基础镜像的方法,需要确认训练作业的资源池是否联通公网,否则执行 install.sh 文件时下载代码会失败。因此可以选择配置网络或使用ECS中构建新镜像的方法。 若要对ChatCLMv3、GLMv4系列模型进行训练时,需要修改 install.sh 中的 transformers
e.sh 使用基础镜像的方法,需要确认训练作业的资源池是否联通公网,否则执行 install.sh 文件时下载代码会失败。因此可以选择配置网络或使用ECS中构建新镜像的方法。 若要对ChatCLMv3、GLMv4系列模型进行训练时,需要修改 install.sh 中的 transformers
用户使用了已开启sudo权限的专属池,使用自定义镜像时,sudo工具未安装或安装错误; 用户使用的cann、cuda环境有兼容性问题; 用户的docker镜像配置错误、网络或防火墙限制、镜像构建问题(文件权限、依赖缺失或构建命令错误)等原因导致的。 父主题: 自定义镜像故障
sh文件,来安装依赖以及下载完整代码。 使用基础镜像的方法,需要确认训练作业的资源池是否联通公网,否则执行 install.sh 文件时下载代码会失败。因此可以选择配置网络或使用ECS中构建新镜像的方法。 若要对ChatCLMv3、GLMv4系列模型进行训练时,需要修改 install.sh 中的 transformers
sh文件,来安装依赖以及下载完整代码。 使用基础镜像的方法,需要确认训练作业的资源池是否联通公网,否则执行 install.sh 文件时下载代码会失败。因此可以选择配置网络或使用ECS中构建新镜像的方法。 若要对ChatCLMv3、GLMv4系列模型进行训练时,需要修改 install.sh 中的 transformers
tonkenization_qwen.py会在cache中读取SimSun.ttf 文件,如果没有,就会联网下载,ModelArts作业在执行过程中可能不能请求网络,会遇到报错。 # 直接手动下载 https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/SimSun
模型初始化 使用MindSpore Lite进行推理时一般需要先设置目标设备的上下文信息,然后构建推理模型,获取输入数据,模型预测并得到最终的结果。一个基础的推理框架写法如下所示: # base_mslite_demo.py import mindspore_lite as mslite