检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
见表1。 表1 视频类数据集格式要求 文件内容 文件格式 文件要求 视频 mp4或avi 支持mp4、avi视频格式上传,所有视频可以放在多个文件夹下,每个文件夹下可以同时包含mp4或avi格式的视频。 单个文件大小不超过50GB,文件数量最多1000个。 事件检测 视频+json
的推理和解答。 通过上述指令,将一个推理任务拆解分步骤进行,可以降低推理任务的难度并可以增强答案可解释性。另外,相比直接输出答案,分步解决也容许大模型有更多的“思考时间”,用更多的计算资源解决该问题。 自洽性 同一问题使用大模型回答多次,生成多个推理路径及答案,选择一致性最高的结果作为最终答案。
nl 图片:图片以tar包格式存储,可以多个tar包。tar包存储原始的图片,每张图片命名要求唯一(如abc.jpg)。图片支持jpg、jpeg、png、bmp格式。 jsonl:图片描述jsonl文件放在最外层目录,一个tar包对应一个jsonl文件,文件内容中每一行代表一段文本,形式为:
您还可以通过这个视频教程了解如何构造请求调用API:https://bbs.huaweicloud.com/videos/102987 。 请求示例如图1,一个请求主要由请求URI、请求方法、请求消息头和请求消息体组成。 图1 请求示例图 请求URI 请求URI由如下部分组成: {URI-scheme}
Studio大模型开发平台提供了模型开发功能,涵盖了从模型训练到模型调用的各个环节。平台支持全流程的模型生命周期管理,确保从数据准备到模型部署的每一个环节都能高效、精确地执行,为实际应用提供强大的智能支持。 模型训练:在模型开发的第一步,ModelArts Studio大模型开发平台为用
AK/SK认证:通过AK(Access Key ID)/SK(Secret Access Key)加密调用请求。经过认证的请求总是需要包含一个签名值,该签名值以请求者的访问密钥(AK/SK)作为加密因子,结合请求体携带的特定信息计算而成。通过访问密钥(AK/SK)认证方式进行认证鉴权,即使用Access
需求。 支持区域: 西南-贵阳一 使用盘古预置NLP大模型进行文本对话 应用百宝箱 应用百宝箱是盘古大模型为用户提供的便捷AI应用集,用户可在其中使用盘古大模型预置的场景应用和外部应用,轻松体验大模型开箱即用的强大能力。 支持区域: 西南-贵阳一 使用盘古应用百宝箱生成创意活动方案
他们的成长。而且这款毛绒玩每一个细节都呈现出了无限的童真和天真,真的是太可爱了!\n\n除了可爱外,这款毛绒玩具还有一个很重要的功能,它能给孩子带来无限温暖的拥抱。当孩子感到孤独或者失落时,它就像一个亲密的好友一样,安慰着他们的心灵。就像你给亲人一个紧紧的拥抱,让他们感受到你的爱
您可以从平台的训练日志中获取到每一步的Loss,并绘制成Loss曲线,来观察其变化趋势。一般来说,一个正常的Loss曲线应该是单调递减的,即随着训练的进行,Loss值不断减小,直到收敛到一个较小的值。 以下给出了几种正常的Loss曲线形式: 图1 正常的Loss曲线:平滑下降 图2 正常的Loss曲线:阶梯下降
为什么微调后的盘古大模型评估结果很好,但实际场景表现很差 当您在微调过程中,发现模型评估的结果很好,一旦将微调的模型部署以后,输入一个与目标任务同属的问题,回答的结果却不理想。这种情况可能是由于以下几个原因导致的,建议您依次排查: 测试集质量:请检查测试集的目标任务和分布与实际场
大模型开发基本流程介绍 大模型(Large Models)通常指的是具有海量参数和复杂结构的深度学习模型,广泛应用于自然语言处理(NLP)等领域。开发一个大模型的流程可以分为以下几个主要步骤: 数据集准备:大模型的性能往往依赖于大量的训练数据。因此,数据集准备是模型开发的第一步。首先,需要根
ModelArts Studio大模型开发平台为用户提供了灵活且高效的空间资产管理方式。平台支持用户根据不同的使用场景、项目类别或团队需求,自定义创建多个工作空间。每个工作空间都是完全独立的,确保了工作空间内的资产不受其他空间的影响,从而保障数据和资源的隔离性与安全性。用户可以根据需求灵活划
如何分析大模型输出错误回答的根因 大模型的输出过程通常是一个黑盒,涉及数以亿计甚至千亿计的参数计算,虽然这些参数共同作用生成输出,但具体的决策机制并不透明。 可以通过在提示词中引导模型输出思考过程,或者在模型输出后追问模型,帮助我们分析错误的根因。例如: “我注意到你犯了xxx的错误,请解释得出该结论的原因。”
中通过添加占位符{{ }}标识表示一些动态的信息,让模型根据不同的情况生成不同的文本,增加模型的灵活性和适应性。例如,将提示词设置为“你是一个旅游助手,需要给用户介绍旅行地的风土人情。请介绍下{{location}}的风土人情。”在评估提示词效果时,可以通过批量替换{{locat
单任务中模糊的指示也会取得较好的效果,但对于规则越复杂的任务,越需要应用这些技巧来输出一个逻辑自洽、清晰明了的指令。 提示词是什么 提示词也称为Prompt,是与大模型进行交互的输入,可以是一个问题、一段文字描述或者任何形式的文本输入。 提示词要素 指令:要求模型执行的具体任务或
耗更多的计算资源进行全面推理。这样,模型能够在多个推理步骤后得出更准确的结论,而不是直接跳到最终答案,减少了过度简化或跳跃推理的可能性。 分步推理与反馈:通过分步推理,模型能够在每个步骤后检查和修正自己的思考过程。 例如,在给定一个复杂的逻辑推理问题时,可以要求模型每完成一小步推
等操作,并对提示词进行保存和管理。 表1 功能说明 功能 说明 提示词工程任务管理 提示词工程平台以提示词工程任务为管理维度,一个任务代表一个场景或一个调优需求,在提示词工程任务下可以进行提示词的调优、比较和评估。 提示词工程任务管理支持工程任务的创建、查询、修改、删除。 提示词撰写
为什么微调后的盘古大模型的回答中会出现乱码 当您将微调的模型部署以后,输入一个与目标任务同属的问题,模型生成的结果中出现了其他语言、异常符号、乱码等字符。这种情况可能是由于以下几个原因导致的,建议您依次排查: 数据质量:请检查训练数据中是否存在包含异常字符的数据,可以通过规则进行清洗。
为什么微调后的盘古大模型的回答会异常中断 当您将微调的模型部署以后,输入一个与目标任务同属的问题,模型生成的结果不完整,出现了异常截断。这种情况可能是由于以下几个原因导致的,建议您依次排查: 推理参数设置:请检查推理参数中的“最大Token限制”参数的设置,适当增加该参数的值,可
内容时。 为了解决这些问题,构建一个自动化的多语言翻译工作流显得尤为重要。通过集成翻译工具(如机器翻译API、大型语言模型等),可以在保证翻译效率的同时,提升翻译质量,并根据实际场景和用户需求进行灵活调整。 本章将详细介绍如何利用不同的节点构建一个高效的多语言文本翻译工作流,并确