检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
建和管理等。一般用户选择此项即可。 如何获取访问密钥AK/SK? 如果在其他功能(例如PyCharmtoolKit/VSCode登录,访问在线服务等)中使用到访问密钥AK/SK认证,获取AK/SK方式请参考如何获取访问密钥章节。 如何删除已有委托列表下面的委托名称? 图8 已有委托
评测动态性能脚本 ├── generate_dataset.py # 生成自定义数据集的脚本 ├── benchmark_utils.py # 工具函数集 ├── benchmark.py # 执行静态,动态性能评测脚本、 ├── requirements.txt
评测动态性能脚本 ├── generate_dataset.py # 生成自定义数据集的脚本 ├── benchmark_utils.py # 工具函数集 ├── benchmark.py # 执行静态、动态性能评测脚本 ├── requirements.txt
# 推理代码包 |──llm_tools # 推理工具 工作目录介绍 详细的工作目录参考如下,建议参考以下要求设置工作目录。训练脚本以分类的方式集中在scripts文件夹中。 ${workdi
dataset:数据集 obs:OBS swr:SWR model_list:AI应用列表 label_task:标注任务 service:在线服务 conditions Array of Constraint objects 数据约束条件。 value Map<String,Object>
Tenant Administrator 可选 CES云监控 授予子用户使用CES云监控服务的权限。通过CES云监控可以查看ModelArts的在线服务和对应模型负载运行状态的整体情况,并设置监控告警。 CES FullAccess 可选 SMN消息服务 授予子用户使用SMN消息服务的
评测动态性能脚本 ├── generate_dataset.py # 生成自定义数据集的脚本 ├── benchmark_utils.py # 工具函数集 ├── benchmark.py # 执行静态、动态性能评测脚本 ├── requirements.txt
//docs.vllm.ai/en/latest/getting_started/quickstart.html。 以下服务启动介绍的是在线推理方式,离线推理请参见https://docs.vllm.ai/en/latest/getting_started/quickstart
dataset:数据集 obs:OBS swr:SWR model_list:AI应用列表 label_task:标注任务 service:在线服务 conditions 否 Array of Constraint objects 数据约束条件。 value 否 Map<String
正常运行完成训练,会显示如下内容。 图7 训练完成 精度一般问题不大,step_loss都是一个较小值。 训练过程中,训练日志会在最后的Rank节点打印。可以使用可视化工具TrainingLogParser查看loss收敛情况。 其它注意事项 默认500step保存一个checkpoint,可以通过在启动脚本
dataset:数据集 obs:OBS swr:SWR model_list:AI应用列表 label_task:标注任务 service:在线服务 conditions Array of Constraint objects 数据约束条件。 value Map<String,Object>
index(max(result[0])) return infer_output 请求 curl -X POST \ 在线服务地址 \ -F images=@test.jpg 返回 {"mnist_result": 7} 在上面的代码示例中,完成了将用户表单输
dataset:数据集 obs:OBS swr:SWR model_list:AI应用列表 label_task:标注任务 service:在线服务 conditions Array of Constraint objects 数据约束条件。 value Map<String,Object>
务需要选择任务所需的资源卡数。 如果选择付费资源,则请确认账号未欠费,且余额高于所选计算规格的收费标准,否则可能会导致AI Gallery工具链服务异常中断。AI Gallery的计算规格的计费说明请参见计算规格说明。 作业参数配置完成后,单击“启动作业”。 在“订单信息确认”页
在获取软件和镜像中,下载并解压代码包。本文档主要使用ascendcloud-aigc-poc-sdxl-finetune文件夹中的文件,请利用OBS Browser+工具将文件夹中内容上传至OBS的代码文件夹code中。 obs://<bucket_name>/code ├── attention_processor
在获取软件和镜像中,下载并解压代码包。本文档主要使用aigc_train->torch_npu->diffusers下的部分文件,请利用OBS Browser+工具将文件夹中内容上传至OBS的代码文件夹code中。 obs://<bucket_name>/code ├── diffusers-train
评测动态性能脚本 ├── generate_dataset.py # 生成自定义数据集的脚本 ├── benchmark_utils.py # 工具函数集 ├── benchmark.py # 执行静态、动态性能评测脚本 ├── requirements.txt
评测动态性能脚本 ├── generate_dataset.py # 生成自定义数据集的脚本 ├── benchmark_utils.py # 工具函数集 ├── benchmark.py # 执行静态、动态性能评测脚本 ├── requirements.txt
评测动态性能脚本 ├── generate_dataset.py # 生成自定义数据集的脚本 ├── benchmark_utils.py # 工具函数集 ├── benchmark.py # 执行静态、动态性能评测脚本 ├── requirements.txt
评测动态性能脚本 ├── generate_dataset.py # 生成自定义数据集的脚本 ├── benchmark_utils.py # 工具函数集 ├── benchmark.py # 执行静态、动态性能评测脚本 ├── requirements.txt