检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
如果需要部署量化模型,需在Notebook中进行模型权重转换后再部署推理服务。 在推理生产环境中部署推理服务 介绍如何在创建AI应用,部署并启动推理服务,在线预测在线服务。 父主题: 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.911)
在“AI应用管理 > AI应用 > 我的订阅”页面,选择并展开订阅的目标模型。在版本列表单击“部署”,可以将订阅的ModelArts模型部署为“在线服务”、“批量服务”或“边缘服务”,详细操作步骤请参见部署服务。 使用订阅的HiLens技能: 在“产品订购 > 订单管理 > AI Ga
、使用方法等信息。 编辑完成后,单击“确认”保存修改。 管理数据集文件 预览文件 在数据集详情页,选择“数据集文件”页签。单击文件名称即可在线预览文件内容。 仅支持预览大小不超过10MB、格式为文本类或图片类的文件。 下载文件 在数据集详情页,选择“数据集文件”页签。单击操作列的
json文件中配置。当业务可提供正常服务时,健康检查接口返回健康状态,否则返回异常状态。 如果要实现无损滚动升级,必须配置健康检查接口。 自定义镜像如果需要在“在线服务”模块使用OBS外部存储挂载功能,需要新建一个OBS挂载专属目录如“/obs-mount/”,避免选择存量目录覆盖已有文件。OBS挂载
正常运行完成训练,会显示如下内容。 图7 训练完成 精度一般问题不大,step_loss都是一个较小值。 训练过程中,训练日志会在最后的Rank节点打印。可以使用可视化工具TrainingLogParser查看loss收敛情况。 其它注意事项 默认500step保存一个checkpoint,可以通过在启动脚本
务需要选择任务所需的资源卡数。 如果选择付费资源,则请确认账号未欠费,且余额高于所选计算规格的收费标准,否则可能会导致AI Gallery工具链服务异常中断。AI Gallery的计算规格的计费说明请参见计算规格说明。 作业参数配置完成后,单击“启动作业”。 在“订单信息确认”页
该接口支持管理员给IAM子用户设置委托,支持设置当前用户的访问密钥。 若没有授权,ModelArts服务的数据管理、训练管理、开发环境、在线服务等功能将不能正常使用。 调用查看授权列表接口查看用户的授权信息。 在管理用户授权时,可以调用删除授权接口删除指定用户的授权或者删除全量用户的授权。
是否查询专属资源池支持的服务部署规格列表,默认为false。 infer_type 否 String 推理方式,枚举值如下: real-time:在线服务,默认值 batch:批量服务 edge: 边缘服务 limit 否 String 指定每一页返回的最大条目数,默认为1000。 offset
SWR OperateAccess 必选 CES云监控 授予子用户使用CES云监控服务的权限。通过CES云监控可以查看ModelArts的在线服务和对应模型负载运行状态的整体情况,并设置监控告警。 CES FullAccess 必选 SMN消息服务 授予子用户使用SMN消息服务的
评测动态性能脚本 ├── generate_dataset.py # 生成自定义数据集的脚本 ├── benchmark_utils.py # 工具函数集 ├── benchmark.py # 执行静态、动态性能评测脚本 ├── requirements.txt
评测动态性能脚本 ├── generate_dataset.py # 生成自定义数据集的脚本 ├── benchmark_utils.py # 工具函数集 ├── benchmark.py # 执行静态、动态性能评测脚本 ├── requirements.txt
评测动态性能脚本 ├── generate_dataset.py # 生成自定义数据集的脚本 ├── benchmark_utils.py # 工具函数集 ├── benchmark.py # 执行静态、动态性能评测脚本 ├── requirements.txt
在获取软件和镜像中,下载并解压代码包。本文档主要使用aigc_train->torch_npu->diffusers下的部分文件,请利用OBS Browser+工具将文件夹中内容上传至OBS的代码文件夹code中。 obs://<bucket_name>/code ├── diffusers-train
评测动态性能脚本 ├── generate_dataset.py # 生成自定义数据集的脚本 ├── benchmark_utils.py # 工具函数集 ├── benchmark.py # 执行静态、动态性能评测脚本 ├── requirements.txt
在获取软件和镜像中,下载并解压代码包。本文档主要使用ascendcloud-aigc-poc-sdxl-finetune文件夹中的文件,请利用OBS Browser+工具将文件夹中内容上传至OBS的代码文件夹code中。 obs://<bucket_name>/code ├── attention_processor
平均可以生成3个有效token,即用1.5倍的时间代价,生成了3倍的token数量,性能提升了100%。 投机推理参数设置 在启动离线或在线推理服务时参考表1所示配置参数,使用投机推理功能。 表1 投机推理相关参数 服务启动方式 配置项 取值类型 配置说明 offline speculative_model
评测动态性能脚本 ├── generate_dataset.py # 生成自定义数据集的脚本 ├── benchmark_utils.py # 工具函数集 ├── benchmark.py # 执行静态、动态性能评测脚本 ├── requirements.txt
评测动态性能脚本 ├── generate_dataset.py # 生成自定义数据集的脚本 ├── benchmark_utils.py # 工具函数集 ├── benchmark.py # 执行静态、动态性能评测脚本 ├── requirements.txt
评测动态性能脚本 ├── generate_dataset.py # 生成自定义数据集的脚本 ├── benchmark_utils.py # 工具函数集 ├── benchmark.py # 执行静态、动态性能评测脚本 ├── requirements.txt
评测动态性能脚本 ├── generate_dataset.py # 生成自定义数据集的脚本 ├── benchmark_utils.py # 工具函数集 ├── benchmark.py # 执行静态、动态性能评测脚本 ├── requirements.txt