检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
├──install.sh #安装opencompass脚本 ├──vllm_api.py #启动vllm api服务器 ├──vllm.py #构造vllm评测配置脚本名字 确保Notebook内通网,已通网可以跳过这一步,未通网需
├──install.sh #安装opencompass脚本 ├──vllm_api.py #启动vllm api服务器 ├──vllm.py #构造vllm评测配置脚本名字 确保容器内通网,未通网需要配置$config_proxy_
执行代码存放的OBS地址,默认值为空,名称固定为“customize_service.py”。推理代码文件需存放在模型“model”目录。该字段不需要填,系统也能自动识别出model目录下的推理代码。公共参数 source_job_id 否 String 来源训练作业的ID,模型是从训练作业产生
模型来源选择“从对象存储服务(OBS)中选择”,元模型选择转换后模型的存储路径,AI引擎选择“Custom”,引擎包选择准备镜像中上传的推理镜像。 系统运行架构选择“ARM”。 图3 设置AI应用 单击“立即创建”开始AI应用创建,待应用状态显示“正常”即完成AI应用创建。 首次创建AI应
为异步推理模型,设置服务启动参数,配置完成后直接单击继续运行即可。 其中服务启动参数与您选择的异步推理模型相关,选择了需要的模型及版本后,系统会自动匹配响应的服务启动参数。 父主题: 创建Workflow节点
SDXL&SD1.5 WebUI基于Lite Cluster适配NPU推理指导(6.3.906) 本文档主要介绍如何在ModelArts Lite的Cluster环境中部署Stable Diffusion的WebUI套件,使用NPU卡进行推理。 方案概览 本方案介绍了在ModelArts的Lite
"2024-01-29T09:28:26Z", "labels" : { "os.modelarts.node/cluster" : "dly-lite", "os.modelarts.node/nodepool" : "nodepool-1"
Open-Sora-Plan1.0基于DevServer适配PyTorch NPU训练推理指导(6.3.907) 本文档主要介绍如何在ModelArts Lite DevServer上,使用PyTorch_npu+华为自研Ascend Snt9B硬件,完成Open-Sora-Plan1
多模态模型推理性能测试 benchmark方法介绍 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 性能benchmark验证使用到的脚本存放在代码包AscendCloud-LLM-xxx
多模态模型推理性能测试 benchmark方法介绍 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 性能benchmark验证使用到的脚本存放在代码包AscendCloud-LLM-xxx
多模态模型推理性能测试 benchmark方法介绍 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 性能benchmark验证使用到的脚本存放在代码包AscendCloud-LLM-xxx
推理性能测试 benchmark方法介绍 性能benchmark包括两部分。 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范围内波动
附录:微调训练常见问题 问题1:在训练过程中遇到NPU out of memory 解决方法: 容器内执行以下命令,指定NPU内存分配策略的环境变量,开启动态内存分配,即在需要时动态分配内存,可以提高内存利用率,减少OOM错误的发生。 export PYTORCH_NPU_ALLOC_CONF
return json.loads(os.getenv(ENV_AG_USER_PARAMS)) def _process_input_data(image_processor): # 加载数据集 dataset_path = os.getenv(ENV_AG_DATASET_DIR)
文件,OBS接口不支持直接调用,需要分多个线程分段复制,目前OBS侧服务端超时时间是30S,可以通过如下设置减少进程数。 # 设置进程数 os.environ['MOX_FILE_LARGE_FILE_TASK_NUM']=1 import moxing as mox # 复制文件
语言模型推理性能测试 benchmark方法介绍 性能benchmark包括两部分。 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范
推理性能测试 benchmark方法介绍 性能benchmark包括两部分。 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范围内波动
推理性能测试 benchmark方法介绍 性能benchmark包括两部分。 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范围内波动
__name__ == "__main__": state_npu_path = os.path.join("trainer_state_npu.json") state_gpu_path = os.path.join("trainer_state_gpu.json")
推理性能测试 benchmark方法介绍 性能benchmark包括两部分。 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范围内波动