检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
当前ModelArts在华北-北京四区域,在对象存储服务创建桶时,请选择华北-北京四。请参考查看OBS桶与ModelArts是否在同一区域检查您的OBS桶区域与ModelArts区域是否一致。 请勿开启桶加密,ModelArts不支持加密的OBS桶,会导致ModelArts读取OBS中的数据失败。
统在训练作业启动前,自动将数据存储位置中的Checkpoint文件下载到训练容器的本地目录。 图1 训练输出设置 断点续训练建议和训练容错检查(即自动重启)功能同时使用。在创建训练作业页面,开启“自动重启”开关。训练环境预检测失败、或者训练容器硬件检测故障、或者训练作业失败时会自动重新下发并运行训练作业。
例如TensorFlow、PyTorch等,但是实际开发中,通常还需要安装其他依赖包,此时可以通过Terminal连接到环境里操作。 单击工具栏“Tools >Start SSH session”,选择SSH Configuration中配置的开发环境。可以执行pip install安装所需要的包。
inv_freq = self.inv_freq.npu() 问题6:使用Qwen2-7B、Qwen2-72B模型有精度问题,重复输出感叹号 检查启动推理服务章节中,高精度模式的环境变量是否开启。 问题7:使用autoAWQ进行qwen-7b模型量化时报错 使用autoAWQ进行qw
path: /etc/localtime 根据config.yaml创建pod。 kubectl apply -f config.yaml 检查pod启动情况,执行下述命令。如果显示“1/1 running”状态代表启动成功。 kubectl get pod -A 进入容器,{po
learning_rate 2.0e-5 指定学习率 disable_gradient_checkpointing true 关闭重计算,用于禁用梯度检查点,默认开启梯度检查点;在深度学习模型训练中用于保存模型的状态,以便在需要时恢复。这种技术可以帮助减少内存使用,特别是在训练大型模型时,但同时影响性能。True表示关闭重计算功能。
learning_rate 2.0e-5 指定学习率 disable_gradient_checkpointing true 关闭重计算,用于禁用梯度检查点,默认开启梯度检查点;在深度学习模型训练中用于保存模型的状态,以便在需要时恢复。这种技术可以帮助减少内存使用,特别是在训练大型模型时,但同时影响性能。True表示关闭重计算功能。
learning_rate 2.0e-5 指定学习率 disable_gradient_checkpointing true 关闭重计算,用于禁用梯度检查点,默认开启梯度检查点;在深度学习模型训练中用于保存模型的状态,以便在需要时恢复。这种技术可以帮助减少内存使用,特别是在训练大型模型时,但同时影响性能。True表示关闭重计算功能。
# 推理代码包 |──llm_tools # 推理工具 |——AscendCloud-OPP #依赖算子包 工作目录介绍 详细的工作目录参考如下,建议参考以下要求
根据镜像实际使用情况自行填写,ModelArts提供的请求协议和端口号的缺省值是HTTPS和8080。请参考https示例。 (可选)健康检查的URL路径必须为"/health"。 OBS模型包规范 模型包的名字必须为model。模型包规范请参见模型包规范介绍。 文件大小规范 当
inv_freq = self.inv_freq.npu() 问题6:使用Qwen2-7B、Qwen2-72B模型有精度问题,重复输出感叹号 检查步骤六中4. 配置环境变量章节中,高精度模式的环境变量是否开启。 问题7:使用autoAWQ进行qwen-7b模型量化时报错 使用auto
inv_freq = self.inv_freq.npu() 问题6:使用Qwen2-7B、Qwen2-72B模型有精度问题,重复输出感叹号 检查步骤六中4. 配置环境变量章节中,高精度模式的环境变量是否开启。 问题7:使用autoAWQ进行qwen-7b模型量化时报错 使用auto
inv_freq = self.inv_freq.npu() 问题6:使用Qwen2-7B、Qwen2-72B模型有精度问题,重复输出感叹号 检查步骤六中4. 配置环境变量章节中,高精度模式的环境变量是否开启。 问题7:使用autoAWQ进行qwen-7b模型量化时报错 使用auto
|──llm_inference # 推理代码包 |──llm_tools # 推理工具 工作目录介绍 详细的工作目录参考如下,建议参考以下要求设置工作目录。训练脚本以分类的方式集中在 scripts 文件夹中。 ${work
在“Checkpoint列表”页面的“操作”列,单击“创建为我的模型”。 在“创建为我的模型”页面,配置相关信息,然后单击“创建”。 打开“权重校验”开关,系统将会检查权重是否存在问题,该功能不会收取额外费用,但会增加创建过程的时间。 在“费用提醒”对话框,仔细阅读预估转换时长和费用信息,单击“确定”,跳转至“我的模型”页面创建模型。
learning_rate 2.0e-5 指定学习率 disable_gradient_checkpointing true 关闭重计算,用于禁用梯度检查点,默认开启梯度检查点;在深度学习模型训练中用于保存模型的状态,以便在需要时恢复。这种技术可以帮助减少内存使用,特别是在训练大型模型时,但同时影响性能。True表示关闭重计算功能。
评测动态性能脚本 ├── generate_dataset.py # 生成自定义数据集的脚本 ├── benchmark_utils.py # 工具函数集 ├── benchmark.py # 执行静态,动态性能评测脚本、 ├── requirements.txt
评测动态性能脚本 ├── generate_dataset.py # 生成自定义数据集的脚本 ├── benchmark_utils.py # 工具函数集 ├── benchmark.py # 执行静态、动态性能评测脚本 ├── requirements.txt
# 推理代码包 |──llm_tools # 推理工具 工作目录介绍 详细的工作目录参考如下,建议参考以下要求设置工作目录。训练脚本以分类的方式集中在scripts文件夹中。 ${workdi
used_percent 该指标用于统计k8s空间的使用率。 百分比(Percent) ≥0 连续2个周期原始值 > 90% 紧急 请及时检查,防止磁盘写满影响业务。推荐清理计算节点无效数据。 容器空间的总量 ma_node_container_space_capacity_megabytes