检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
使用kv-cache-int8量化 kv-cache-int8是实验特性,在部分场景下性能可能会劣于非量化。当前支持per-tensor静态量化,支持kv-cache-int8量化和FP16、BF16、AWQ、smoothquant的组合。 kv-cache-int8量化支持的模型请参见支持的模型列表和权重文件。
自动学习 准备数据 模型训练 部署上线 模型发布
模型来源的类型,仅当模型为自动学习部署过来时有值,取值为auto。 model_id String 模型id。 model_source String 模型来源。auto:自动学习;algos:预置算法;custom:自定义。 install_type Array of strings 模型支持的部署类型列表。
DeepSeek系列模型推理 DeepSeek模型基于ModelArts Lite Server适配MindIE推理部署指导
ModelArts Studio大模型即服务平台已预置非量化模型与AWQ-W4A16量化模型的模型模板。 非量化模型可以支持调优、压缩、部署等操作。 量化模型仅支持部署操作。当需要获取SmoothQuant-W8A8量化模型时,则可以通过对非量化模型进行模型压缩获取。
Edge 在ModelArts中使用边缘节点部署边缘服务时能否使用http接口协议?
删除工作空间 功能介绍 删除工作空间。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI DELETE /v1/{project_id}/workspaces/{workspace_id}
如何定位Workflow运行报错 使用run模式运行工作流报错时,分析解决思路如下: 确认安装的SDK包是否是最新版本,避免出现包版本不一致问题。 检查编写的SDK代码是否符合规范,具体可参考相应的代码示例。 检查运行过程中输入的内容是否正确,格式是否与提示信息中要求的一致。 根
训练预测分析模型 创建自动学习后,将会进行模型的训练,得到预测分析的模型。模型部署步骤将使用预测模型发布在线预测服务。 操作步骤 在新版自动学习页面,单击创建成功的项目名称,查看当前工作流的执行情况。 在“预测分析”节点中,待节点状态由“运行中”变为“运行成功”,即完成了模型的自动训练。
使用自动学习实现预测分析 准备预测分析数据 创建预测分析项目 训练预测分析模型 部署预测分析服务 父主题: 使用自动学习实现零代码AI开发
最佳实践。\n\n2.培训和教育:确保您和您的同事接受了必要的培训和教育,以了解正确的安全准则和行为。\n\n3.使用正确的工具和设备:确保您使用正确的工具和设备,并且它们得到了正确的维护和保养。\n\n4.个人防护装备:确保您和您的同事穿戴正确的个人防护装备,如安全鞋、透明眼镜或面罩、手套等。\n\n5
Standard自动学习 Standard Workflow Standard数据管理 Standard开发环境 Standard模型训练 Standard模型部署 Standard资源管理 Standard支持的AI框架 父主题: 功能介绍
精度对齐 长训Loss比对结果 使用Msprobe工具分析偏差 Loss对齐结果 父主题: Dit模型PyTorch迁移与精度性能调优
使用自动学习实现物体检测 准备物体检测数据 创建物体检测项目 标注物体检测数据 训练物体检测模型 部署物体检测服务 父主题: 使用自动学习实现零代码AI开发
使用kv-cache-int8量化 kv-cache-int8是实验特性,在部分场景下性能可能会劣于非量化。当前支持per-tensor静态量化,支持kv-cache-int8量化和FP16、BF16、AWQ、smoothquant的组合。 kv-cache-int8量化支持的模型请参见表3。
OBS提供了多种语言SDK供选择,开发者可根据使用习惯下载OBS SDK进行调用。使用OBS SDK前,需下载OBS SDK包,然后在本地开发环境中安装使用。 详细指导 :《OBS SDK参考》 MoXing MoXing是ModelArts自研的组件,是一种轻型的分布式框架,构建于Ten
使用自动学习实现图像分类 准备图像分类数据 创建图像分类项目 标注图像分类数据 训练图像分类模型 部署图像分类服务 父主题: 使用自动学习实现零代码AI开发
推理关键特性使用 量化 剪枝 分离部署 Prefix Caching multi-step 投机推理 图模式 多模态 Chunked Prefill multi-lora guided-decoding 父主题: 主流开源大模型基于Lite Server适配Ascend-vLLM
主流开源大模型基于Lite Server适配PyTorch NPU推理指导(6.3.906) 推理场景介绍 部署推理服务 推理性能测试 推理精度测试 推理模型量化 附录:大模型推理常见问题 父主题: LLM大语言模型训练推理
性能调优 Profiling数据采集 使用Advisor工具分析生成调优建议 调优前后性能对比 父主题: Dit模型PyTorch迁移与精度性能调优