检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
ma-cli dli-job提交DLI Spark作业支持的命令 $ma-cli dli-job -h Usage: ma-cli dli-job [OPTIONS] COMMAND [ARGS]... DLI spark job submission and query job
准备资源 创建专属资源池 本文档中的模型运行环境是ModelArts Standard,用户需要购买专属资源池,具体步骤请参考创建资源池。 资源规格要求: 计算规格:用户可参考表2。 硬盘空间:至少200GB。 昇腾资源规格: Ascend: 1*ascend-snt9b表示昇腾单卡
准备资源 创建专属资源池 本文档中的模型运行环境是ModelArts Standard,用户需要购买专属资源池,具体步骤请参考创建资源池。 资源规格要求: 计算规格:用户可参考表2。 硬盘空间:至少200GB。 昇腾资源规格: Ascend: 1*ascend-snt9b表示昇腾单卡
服务韧性 韧性特指安全韧性,即云服务受攻击后的韧性,不含可靠性、可用性。本章主要阐述ModelArts服务受入侵的检测响应能力、防抖动的能力、域名合理使用、内容安全检测等能力。 安全防护套件覆盖和使用堡垒机,增强入侵检测和防御能力 ModelArts服务部署主机层、应用层、网络层和数据层的安全防护套件
准备MaaS资源 在使用MaaS服务时,需要先完成OBS桶、资源池等准备工作。 准备OBS桶 在ModelArts Studio大模型即服务平台创建自定义模型、调优或压缩模型时,需要在对象存储服务OBS中创建OBS桶,用于存放模型权重文件、训练数据集或者是存放永久保存的日志。 创建
不同机型的对应的软件配套版本 由于弹性集群资源池可选择弹性裸金属或弹性云服务器作为节点资源,不同机型的节点对应的操作系统、适用的CCE集群版本等不相同,为了便于您制作镜像、升级软件等操作,本文对不同机型对应的软件配套版本做了详细介绍。 裸金属服务器的对应的软件配套版本 表1 裸金属服务器
按需计费 按需计费是一种先使用再付费的计费模式,适用于无需任何预付款或长期承诺的用户。本文将介绍按需计费资源的计费规则。 适用场景 按需计费适用于资源需求波动的场景,例如面向ToC业务的AIGC推理场景,客户业务量会随时间有规律的波动,按需计费模式能大幅降低客户的业务成本。可在运行自动学习作业
使用AI Gallery在线推理服务部署模型 AI Gallery支持将训练的模型或创建的模型资产部署为在线推理服务,可供用户直接调用API完成推理业务。 约束限制 如果模型的“任务类型”是“文本问答”或“文本生成”,则支持在线推理。如果模型的“任务类型”是除“文本问答”和“文本生成
ma-cli image镜像构建支持的命令 ma-cli image命令支持:查询用户已注册的镜像、查询/加载镜像构建模板、Dockerfile镜像构建、查询/清理镜像构建缓存、注册/取消注册镜像、调试镜像是否可以在Notebook中使用等。具体命令及功能可执行ma-cli image
在ECS上构建自定义镜像并在Notebook中使用 使用场景和构建流程说明 用户可以使用ModelArts提供的基础镜像或第三方的镜像来编写Dockerfile,在ECS服务器上构建出完全适合自己的镜像。然后将镜像进行注册,用以创建新的开发环境,满足自己的业务需求。 本案例将基于ModelArts
在推理生产环境中部署推理服务 本章节介绍如何在ModelArts的推理生产环境(ModelArts控制台的在线服务功能)中部署推理服务。 Step1 准备模型文件和权重文件 在OBS桶中,创建文件夹,准备模型权重文件、推理启动脚本run_vllm.sh及SSL证书。此处以chatglm3
在JupyterLab中使用MindInsight可视化作业 ModelArts支持在开发环境中开启MindInsight可视化工具。在开发环境中通过小数据集训练调试算法,主要目的是验证算法收敛性、检查是否有训练过程中的问题,方便用户调测。 MindInsight能可视化展现出训练过程中的标量
在JupyterLab中使用TensorBoard可视化作业 ModelArts支持在开发环境中开启TensorBoard可视化工具。TensorBoard是TensorFlow的可视化工具包,提供机器学习实验所需的可视化功能和工具。 TensorBoard是一个可视化工具,能够有效地展示
数据标注场景介绍 由于模型训练过程需要大量有标签的数据,因此在模型训练之前需对没有标签的数据添加标签。您可以通过创建单人标注作业或团队标注作业对数据进行手工标注,或对任务启动智能标注添加标签,快速完成对图片的标注操作,也可以对已标注图片修改或删除标签进行重新标注。 ModelArts
Ascend-vLLM介绍 Ascend-vLLM概述 vLLM是GPU平台上广受欢迎的大模型推理框架,因其高效的continuous batching和pageAttention功能而备受青睐。此外,vLLM还具备投机推理和自动前缀缓存等关键功能,使其在学术界和工业界都得到了广泛应用
在推理生产环境中部署推理服务 本章节介绍如何在ModelArts的推理生产环境(ModelArts控制台的在线服务功能)中部署推理服务。 Step1 准备模型文件和权重文件 在OBS桶中,创建文件夹,准备模型权重文件、推理启动脚本run_vllm.sh及SSL证书。此处以chatglm3
使用ModelArts Standard一键完成商超商品识别模型部署 ModelArts的AI Gallery中提供了大量免费的模型供用户一键部署,进行AI体验学习。 本文以“商超商品识别”模型为例,完成从AI Gallery订阅模型,到ModelArts一键部署为在线服务的免费体验过程
创建自动模型优化的训练作业 背景信息 如果用户使用的AI引擎为pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-x86_64和tensorflow_2.1.0-cuda_10.1-py_3.7-ubuntu_18.04-x86_64,并且优化的超参类型为
配置节点参数控制分支执行 功能介绍 支持单节点通过参数配置或者获取训练输出的metric指标信息来决定执行是否跳过,同时可以基于此能力完成对执行流程的控制。 应用场景 主要用于存在多分支选择执行的复杂场景,在每次启动执行后需要根据相关配置信息决定哪些分支需要执行,哪些分支需要跳过,
示例:创建DDP分布式训练(PyTorch+NPU) 本文介绍了使用训练作业的自定义镜像+自定义启动命令来启动PyTorch DDP on Ascend加速卡训练。 前提条件 需要有Ascend加速卡资源池。 创建训练作业 本案例创建训练作业时,需要配置如下参数。 表1 创建训练作业的配置说明