检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
ModelArts Studio大模型开发平台使用流程 盘古大模型服务简介 盘古大模型服务致力于深耕行业,打造多领域行业大模型和能力集。 ModelArts Studio大模型开发平台是盘古大模型服务推出的集数据管理、模型训练、模型部署于一体的综合平台,专为开发和应用大模型而设计,
获取项目ID 从控制台获取项目ID 登录管理控制台。 在页面右上角的用户名的下拉列表中选择“我的凭证”。 图1 我的凭证 在“我的凭证”页面,获取项目ID(project_id),以及账号名、账号ID、IAM用户名和IAM用户ID。 在调用盘古API时,获取的项目id需要与盘古服务部署区域一致
数据集标注场景介绍 数据标注概念 数据标注是数据工程中的关键步骤,旨在为无标签的数据集添加准确的标签,从而为模型训练提供有效的监督信号。标注数据的质量直接影响模型的训练效果和精度,因此高效、准确的标注过程至关重要。数据标注不仅仅是人工输入,它还涉及对数据内容的理解和分类,以确保标签精准地反映数据的特征和用途
什么是提示词工程 提示词工程简介 提示词工程(Prompt Engineering)是一个较新的学科,应用于开发和优化提示词(Prompt),帮助用户有效地将大语言模型用于各种应用场景和研究领域。掌握提示词工程相关技能将有助于用户更好地了解大语言模型的能力和局限性。 提示词工程不仅是关于设计和研发提示词
产品优势 预置多,数据工程“易” ModelArts Studio大模型开发平台预置多种数据处理AI算子,多种标注工具,满足用户多任务多场景需求,提高开发/标注效率>10X。 0代码,模型开发“简” ModelArts Studio大模型开发平台预置盘古系列预训练大模型,支持快速开发
创建提示词评估数据集 批量评估提示词效果前,需要先上传提示词变量数据文件用于创建对应的评估数据集。 提示词变量是一种可以在文本生成中动态替换的占位符,用于根据不同的场景或用户输入生成不同的内容。其中,变量名称可以是任意的文字,用于描述变量的含义或作用。 提示词评估数据集约束限制 上传文件限
打造政务智能问答助手 场景介绍 大模型(LLM)通过对海量公开数据(如互联网和书籍等语料)进行大规模无监督预训练,具备了强大的语言理解、生成、意图识别和逻辑推理能力。这使得大模型在智能问答系统中表现出色:用户输入问题后,大模型依靠其强大的意图理解能力和从大规模预训练语料及通用SFT
产品功能 空间管理 数据工程 模型开发 Agent开发
准备工作 申请试用盘古大模型服务 配置服务访问授权 创建并管理盘古工作空间
开发盘古大模型Agent应用 Agent开发平台概述 手工编排Agent应用 创建与管理工作流
部署NLP大模型 创建NLP大模型部署任务 查看NLP大模型部署任务详情 管理NLP大模型部署任务 父主题: 开发盘古NLP大模型
部署科学计算大模型 创建科学计算大模型部署任务 查看科学计算大模型部署任务详情 管理科学计算大模型部署任务 父主题: 开发盘古科学计算大模型
训练NLP大模型 NLP大模型训练流程与选择建议 创建NLP大模型训练任务 查看NLP大模型训练状态与指标 发布训练后的NLP大模型 管理NLP大模型训练任务 NLP大模型训练常见报错与解决方案 父主题: 开发盘古NLP大模型
责任共担 华为云秉承“将公司对网络和业务安全性保障的责任置于公司的商业利益之上”。针对层出不穷的云安全挑战和无孔不入的云安全威胁与攻击,华为云在遵从法律法规业界标准的基础上,以安全生态圈为护城河,依托华为独有的软硬件优势,构建面向不同区域和行业的完善云服务安全保障体系。 安全性是华为云与您的共同责任
训练科学计算大模型 科学计算大模型训练流程与选择建议 创建科学计算大模型训练任务 查看科学计算大模型训练状态与指标 发布训练后的科学计算大模型 管理科学计算大模型训练任务 科学计算大模型训练常见报错与解决方案 父主题: 开发盘古科学计算大模型
约束与限制 受技术等多种因素制约,盘古大模型服务存在一些约束限制。 不同模型请求的最大Token数有所不同,具体信息请参见模型能力与规格。 关于模型支持的训练数据量要求,例如NLP大模型,请参考《用户指南》“开发盘古NLP大模型 > 训练NLP大模型 > NLP大模型训练流程与选择建议
配置服务访问授权 配置OBS访问授权 盘古大模型服务使用对象存储服务(Object Storage Service,简称OBS)进行数据存储,实现安全、高可靠和低成本的存储需求。因此,为了能够顺利进行存储数据、训练模型等操作,需要用户配置访问OBS服务的权限。 登录ModelArts
数据工程使用流程 高质量数据是推动大模型不断迭代和优化的根基,它的质量直接决定了模型的性能、泛化能力以及应用场景的适配性。只有通过系统化地准备和处理数据,才能提取出有价值的信息,从而更好地支持模型训练。因此,数据的采集、清洗、标注、评估、发布等环节,成为数据开发中不可或缺的重要步骤
应用场景 客服 通过NLP大模型对传统的客服系统进行智能化升级,提升智能客服的效果。企业原智能客服系统仅支持回复基础的FAQ,无语义泛化能力,意图理解能力弱,转人工频率极高。面对活动等时效性场景,智能客服无回答能力。提高服务效率:大模型智能客服可以7x24小时不间断服务,相较于人工客服
概述 盘古大模型整合华为云强大的计算和数据资源,将先进的AI算法集成在预训练大模型中,打造出具有深度语义理解与生成能力的人工智能大语言模型。可进行对话互动、回答问题、协助创作。 盘古大模型在ModelArts Studio大模型开发平台部署后,可以通过API调用推理接口。 表1 API