检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
体验盘古大模型功能 申请体验盘古大模型服务 体验盘古预置模型能力 体验盘古驱动的应用百宝箱
启用模型内容审核 内容审核是文本的检测技术,可自动检测涉黄、涉暴、违规等内容,对用户向模型输入的内容、模型输出内容进行内容审核,帮助客户降低业务违规风险。 授权使用华为云内容审核,有效拦截大模型输入输出的有害信息,保障模型调用安全。 授权后,在调用盘古大模型能力时,模型的输入和输
本场景采用了下表中的推理参数进行解码,您可以在平台部署后参考如下参数调试: 表3 推理核心参数设置 推理参数 设置值 最大Token限制(max_token) 4096 温度(temperature) 0.3 核采样(top_p) 1.0 话题重复度控制(presence_penalty) 0 部署推理服务后,可以
本场景采用了下表中的推理参数进行解码,您可以在平台部署后参考如下参数调试: 表2 推理核心参数设置 推理参数 设置值 最大Token限制(max_token) 1024 温度(temperature) 0.3 核采样(top_p) 0.8 话题重复度控制(presence_penalty) 0 部署推理服务后,可以
而提高模型的整理效果。 表2 NLP大模型清单 模型类别 模型 token 简介 NLP大模型 盘古-NLP-N1-基础功能模型-32K 部署可选4096、32768 基于NLP-N1-基模型训练的基础功能模型,具备文案生成、多轮对话、实体抽取、翻译、知识问答等大模型通用能力,具有32K上下文能力,可外推至128K。
模型支持的区域 区域是一个地理区域的概念。我国地域面积广大,由于带宽的原因,无法仅依靠一个数据中心为全国客户提供服务。因此,根据地理区域的不同将全国划分成不同的支持区域。 盘古大模型当前仅支持西南-贵阳一区域。 图1 盘古大模型服务区域 父主题: 模型能力与规格
步处理并最终输出答案,展示在前端界面。 在该框架中,query改写模块、中控模块和问答模块由大模型具体实现,因此涉及到大模型的训练、优化、部署与调用等流程。pipeline编排流程可以基于python代码实现,也可以人工模拟每一步的执行情况。检索模块可以使用Elastic Sea
约束与限制 受技术等多种因素制约,盘古大模型服务存在一些约束限制。 每个模型请求的最大Token数有所差异,详细请参见模型的基础信息。 模型所支持的训练数据量、数据格式要求请参见《用户指南》“准备盘古大模型训练数据集 > 模型训练所需数据量与数据格式要求”。
描述 project_id 是 String 项目ID,获取方法请参见获取项目ID。 deployment_id 是 String 模型的部署ID,获取方法请参见获取模型调用API地址。 请求参数 表2 请求Header参数 参数 是否必选 参数类型 描述 X-Auth-Token
身份认证与访问控制 用户可以通过调用REST网络的API来访问盘古大模型服务,有以下两种调用方式: Token认证:通过Token认证调用请求。 AK/SK认证:通过AK(Access Key ID)/SK(Secret Access Key)加密调用请求。经过认证的请求总是需要
体验盘古驱动的应用百宝箱 应用百宝箱是盘古大模型为用户提供的便捷AI应用集,用户可在其中使用盘古大模型预置的场景应用和外部应用,轻松体验大模型开箱即用的强大能力。 体验盘古预置模型能力前,请先完成申请体验盘古大模型服务操作。 登录盘古大模型套件平台,在左侧导航栏中选择“应用百宝箱”,进入“应用百宝箱”页面。
体验盘古驱动的应用百宝箱 应用百宝箱是盘古大模型为用户提供的便捷AI应用集,用户可在其中使用盘古大模型预置的场景应用和外部应用,轻松体验大模型开箱即用的强大能力。 体验盘古预置模型能力前,请先完成申请体验盘古大模型服务操作。 登录盘古大模型套件平台,在左侧导航栏中选择“应用百宝箱”,进入“应用百宝箱”页面。
体验盘古预置模型能力 体验盘古预置模型能力前,请先完成申请体验盘古大模型服务操作。 登录盘古大模型套件平台,在左侧导航栏中单击“能力调测”。 如图1,能力调测页面提供了文本补全和多轮对话功能,且每种功能都提供了预置的盘古大模型供用户体验。用户可以在页面右侧进行参数设置,然后在输入
体验盘古预置模型能力 体验盘古预置模型能力前,请先完成申请体验盘古大模型服务操作。 登录盘古大模型套件平台,在左侧导航栏中单击“能力调测”。 如图1,能力调测页面提供了文本补全和多轮对话功能,且每种功能都提供了预置的盘古大模型供用户体验。用户可以在页面右侧进行参数设置,然后在输入
返回结果 状态码 请求发送以后,您会收到响应,包含状态码、响应消息头和消息体。 状态码是一组从1xx到5xx的数字代码,状态码表示了请求响应的状态,完整的状态码列表请参见状态码。 对于Pangu服务接口,如果调用后返回状态码为“200”,则表示请求成功。 响应消息头 对应请求消息
训练智能客服系统大模型需要考虑哪些方面 根据智能客服场景,建议从以下方面考虑: 根据企业实际服务的场景和积累的数据量,评估是否需要构建行业模型,如电商、金融等。 根据每个客户的金牌客服话术,可以对对话模型进行有监督微调,进一步优化其性能。 根据每个客户的实际对话知识,如帮助文档、
运行Agent 单轮执行 调用run接口运行一个Agent: agent.run("帮我定个下午3点到8点2303会议室") Agent的运行时会进行自我迭代,并且选择合适的工具,在日志中打印最终的执行结果: 用户: 帮我定个下午3点到8点2303会议室 助手: 好的,2023-11-17
产品优势 海量训练数据 盘古大模型依托海量且多样化的训练数据,涵盖从日常对话到专业领域的广泛内容,帮助模型更好地理解和生成自然语言文本,适用于多个领域的业务应用。这些数据不仅丰富多样,还为模型提供了深度和广度的语言学习基础,使其能够生成更加自然、准确且符合语境的文本。 通过对海量
多轮问答场景,为什么微调后的效果不好 当您的目标任务是多轮问答,并且使用了多轮问答数据进行微调,微调后却发现多轮回答的效果不理想。这种情况可能是由于以下几个原因导致的,建议您依次排查: 数据格式:多轮问答场景需要按照指定的数据格式来构造,问题需要拼接上历史所有轮对话的问题和回答。
描述 project_id 是 String 项目ID,获取方法请参见获取项目ID。 deployment_id 是 String 模型的部署ID,获取方法请参见获取模型调用API地址。 请求参数 表2 请求Header参数 参数 是否必选 参数类型 描述 X-Auth-Token