检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
= list(map(lambda x: x['input_ids'], sample[key])) return sample 支持的是预训练数据风格,会根据参数args.json_keys的设置,从数据集中找到对应关键字的文本内容。例如本案例中提供的 train-00
sh的构建方法参考基于ModelArts Standard运行GPU训练作业。 如果预置脚本调用结果不符合预期,可以在容器实例中进行修改和迭代。 针对专属池场景 由于专属池支持SFS挂载,因此代码、数据的导入会更简单,甚至可以不用再关注OBS的相关操作。 可以直接把SFS的目录直接挂载到调试节点的"/mnt/sf
下载whl文件“mindspore-2.1.1-cp37-cp37m-linux_aarch64.whl”(下载链接)。 ModelArts当前仅支持CANN商用版本,不支持社区版。 下载Miniconda3安装文件。 使用地址https://repo.anaconda.com/miniconda/Miniconda3-py37_4
以下对resnet18在cifar10数据集上的分类任务,给出了单机训练和分布式训练改造(DDP)的代码。直接执行代码为多节点分布式训练且支持CPU分布式和GPU分布式,将代码中的分布式改造点注释掉后即可进行单节点单卡训练。 训练代码中包含三部分入参,分别为训练基础参数、分布式参
sh的构建方法参考基于ModelArts Standard运行GPU训练作业。 如果预置脚本调用结果不符合预期,可以在容器实例中进行修改和迭代。 针对专属池场景 由于专属池支持SFS挂载,因此代码、数据的导入会更简单,甚至可以不用再关注OBS的相关操作。 可以直接把SFS的目录直接挂载到调试节点的"/mnt/sf