检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
"input": "输入(选填)", "output": "模型回答(必填)", } ] MOSS 指令微调数据:本案例中还支持 MOSS 格式数据,标准的.json格式的数据,内容包括可以多轮对话、指令问答。例如以下样例: { "conversation_id":
查看OBS桶与ModelArts是否在同一区域检查您的OBS桶区域与ModelArts区域是否一致。 请勿开启桶加密,ModelArts不支持加密的OBS桶,会导致ModelArts读取OBS中的数据失败。 在桶列表页面,单击桶名称,进入该桶的概览页面。 单击左侧导航的“对象”,
rain/ 微调数据集预处理参数说明 微调包含SFT和LoRA微调。数据集预处理脚本参数说明如下: --input:原始数据集的存放路径。支持 .parquet \ .csv \ .json \ .jsonl \ .txt \ .arrow 格式。 --output-prefix
不同模型推荐的训练参数和计算规格要求如表1所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表1 不同模型推荐的参数与NPU卡数设置 序号 支持模型 支持模型参数量 训练策略类型 文本序列长度(SEQ_LEN) 并行参数设置 micro batch size (MBS) 规格与节点数 1
如果命令未按照下图完整输出(比如命令报错或只输出了上半部分没有展示下面的进程信息),则需要先尝试恢复npu-smi工具(提交工单联系华为云技术支持),将npu-smi恢复后,再进行新版本的固件驱动安装。 图4 检查npu-smi工具 查看环境信息。执行如下命令查看当前拿到的机器的固件和驱动版本。
用原vLLM的入参名称,默认为0.9。 --trust-remote-code:是否相信远程代码。 --dtype:模型推理的数据类型。仅支持FP16和BF16数据类型推理。float16表示FP16,bfloat16表示BF16。 推理启动脚本必须名为run_vllm.sh,不可修改其他名称。
"input": "输入(选填)", "output": "模型回答(必填)", } ] MOSS 指令微调数据:本案例中还支持 MOSS 格式数据,标准的.json格式的数据,内容包括可以多轮对话、指令问答。例如以下样例: { "conversation_id":
"input": "输入(选填)", "output": "模型回答(必填)", } ] MOSS 指令微调数据:本案例中还支持 MOSS 格式数据,标准的.json格式的数据,内容包括可以多轮对话、指令问答。例如以下样例: { "conversation_id":
手动修改训练参数和tokenizer文件,具体请参见训练tokenizer文件说明。 由于模型中LoRA微调训练存在已知的精度问题,因此不支持TP(tensor model parallel size)张量模型并行策略,推荐使用PP(pipeline model parallel
手动修改训练参数和tokenizer文件,具体请参见训练tokenizer文件说明。 由于模型中LoRA微调训练存在已知的精度问题,因此不支持TP(tensor model parallel size)张量模型并行策略,推荐使用PP(pipeline model parallel
"input": "输入(选填)", "output": "模型回答(必填)", } ] MOSS指令微调数据:本案例中还支持MOSS格式数据,标准的.json格式的数据,内容包括可以多轮对话、指令问答。例如以下样例: { "conversation_id":
时,没配置自定义驱动,默认驱动不满足业务要求,可通过本章节将驱动升级到指定版本。 5 (可选)配置镜像预热 Lite Cluster资源池支持镜像预热功能,镜像预热可实现将镜像提前在资源池节点上拉取好,在推理及大规模分布式训练时有效缩短镜像拉取时间。 快速配置Lite Cluster资源案例
shot数 llama3_8b 3200 8 采用默认值 llama3_70b 3200 4 [0, 1, 2] (可选) opencompass也支持通过本地权重来进行ppl精度测试。本质上使用transformers进行推理,因为没有框架的优化,执行时间最长。另一方面,由于是使用tra
手动修改训练参数和tokenizer文件,具体请参见训练tokenizer文件说明。 由于模型中LoRA微调训练存在已知的精度问题,因此不支持TP(tensor model parallel size)张量模型并行策略,推荐使用PP(pipeline model parallel
shot数 llama3_8b 3200 8 采用默认值 llama3_70b 3200 4 [0, 1, 2] (可选) opencompass也支持通过本地权重来进行ppl精度测试。本质上使用transformers进行推理,因为没有框架的优化,执行时间最长。另一方面,由于是使用tra
手动修改训练参数和tokenizer文件,具体请参见训练tokenizer文件说明。 由于模型中LoRA微调训练存在已知的精度问题,因此不支持TP(tensor model parallel size)张量模型并行策略,推荐使用PP(pipeline model parallel
"input": "输入(选填)", "output": "模型回答(必填)", } ] MOSS 指令微调数据:本案例中还支持 MOSS 格式数据,标准的.json格式的数据,内容包括可以多轮对话、指令问答。例如以下样例: { "conversation_id":
文件名中的xxx表示具体的时间戳,以包的实际时间为准。 获取路径:Support-E网站。 说明: 如果没有软件下载权限,请联系您所在企业的华为方技术支持下载获取。 基础镜像 西南-贵阳一:swr.cn-southwest-2.myhuaweicloud.com/atelier/pytorc
shot数 llama3_8b 3200 8 采用默认值 llama3_70b 3200 4 [0, 1, 2] (可选) opencompass也支持通过本地权重来进行ppl精度测试。本质上使用transformers进行推理,因为没有框架的优化,执行时间最长。另一方面,由于是使用tra
shot数 llama3_8b 3200 8 采用默认值 llama3_70b 3200 4 [0, 1, 2] (可选) opencompass也支持通过本地权重来进行ppl精度测试。本质上使用transformers进行推理,因为没有框架的优化,执行时间最长。另一方面,由于是使用tra